Simulating Nanoindentation of Thin Cu Films Using Molecular Dynamics and Peridynamics

Abstract:

Article Preview

Nanoindentation is a useful experimental method to characterize the micromechanical properties of materials. In this study molecular dynamics and peridynamics are used to simulate nanoindentation, with a spherical indenter targeting a thin single crystal Cu film, resting on an infinitely stiff substrate. The objective is to compare the results obtained from molecular dynamic simulations to those obtained using a peridynamic approach as regards the force-displacement curves and the deformation patterns after that the material parameters in the peridynamic model have been fitted to the force displacement curve from the molecular dynamic simulation.

Info:

Periodical:

Solid State Phenomena (Volume 258)

Edited by:

Pavel Šandera

Pages:

25-28

Citation:

A. Ahadi et al., "Simulating Nanoindentation of Thin Cu Films Using Molecular Dynamics and Peridynamics", Solid State Phenomena, Vol. 258, pp. 25-28, 2017

Online since:

December 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] Silling S.A. 2000, Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech. Phy. Solids, vol 48, pp.175-209.

DOI: https://doi.org/10.1016/s0022-5096(99)00029-0

[2] LAMMPS, http: /lammps. sandia. gov.

[3] Holian, B.L., Ravelo, R. 1995, Fracture simulation using large-scale molecular dynamics, Phys. Rev. B 51 17 11275-11288.

DOI: https://doi.org/10.1103/physrevb.51.11275

[4] Foiles S. M, Baskes M. I, Daw M. S 1986, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Physical review B, Vol. 33, No. 12.

DOI: https://doi.org/10.1103/physrevb.33.7983

[5] Ellad B. T., Miller R. E. Modeling Materials Continuum, Atomistic and Multiscale Techniques. Cambridge University press. (2011).

[6] Hansson, P. 2015, Influence of the cryctallographic orientation and thickness of thin copper coating during nanoindentation, Engineering Fracture Mechanics, Vol. 150, 143-152.

DOI: https://doi.org/10.1016/j.engfracmech.2015.08.002

[7] Parks, M.L., Seleson, P., Plimpton, S.J., Silling, S.A., Lehoucq, R. B, 2013. Peridynamics with LAMMPS: A User Guide v0. 3 Beta, Sandia National Laboratories.

DOI: https://doi.org/10.2172/1031301

[8] Silling, S.A., Askari, E., 2005, Meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, Vol. 83, p.1526–1535.

DOI: https://doi.org/10.1016/j.compstruc.2004.11.026

[9] Ahadi, A., Melin, S. 2016, Size dependence of the Poisson's ratio in single-crystal fcc copper nanobeam, Computational Materials Science, 111, 322-327.

DOI: https://doi.org/10.1016/j.commatsci.2015.09.026

[10] Ahadi, A., Melin, S., 2016, Capturing nano scale effects by peridynamics, report Division of mechanics, Lund University, submitted for publication.