Predicting Strain Reduction Factor for Concrete-Filled FRP Tube Columns Incorporating Interface Gap and Prestress


Article Preview

This paper reports the findings from an analytical study into the influence of fiber reinforced polymer (FRP)-to-concrete interface gap and prestressed FRP tubes on strain reduction factor (kε) for concrete-filled FRP tube (CFFT) columns. A database that consists of a total of 45 aramid FRP- (AFRP) confined normal-and high-strength concrete (NSC and HSC) specimens with circular cross-sections is presented. All specimens were cylinders with a 152 mm diameter and 305 mm height, and their unconfined concrete strengths ranged from approximately 45 to 110 MPa. Analyses of the experimental databases that consisted of 22 specimens manufactured with FRP-to-concrete interface gap and a further 23 specimens prepared with lateral prestress is presented and discussed. Based on close examination of the hoop strain development on the FRP confining shell, expressions to predict strain reduction factors (kε) are proposed. The comparison of the proposed model predictions with the experimental test results of specimens prepared with an interface gap or prestressed FRP tubes shows good agreement.



Solid State Phenomena (Volume 263)

Edited by:

Prof. Haider F. Abdul Amir






T. Vincent and T. Ozbakkaloglu, "Predicting Strain Reduction Factor for Concrete-Filled FRP Tube Columns Incorporating Interface Gap and Prestress", Solid State Phenomena, Vol. 263, pp. 18-23, 2017

Online since:

September 2017




* - Corresponding Author

[1] Ozbakkaloglu, T., J.C. Lim, and T. Vincent, FRP-confined concrete in circular sections: Review and assessment of the stress-strain models, Eng. Struct. 49 (2013) 1068-1088.

DOI: 10.1016/j.engstruct.2012.06.010

[2] Ozbakkaloglu, T. and J.C. Lim, Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model, Compos. Part B 55 (2013) 607 - 634.

DOI: 10.1016/j.compositesb.2013.07.025

[3] Lim, J.C. and T. Ozbakkaloglu, Confinement model for FRP-confined high-strength concrete, ASCE, J. Compos. Constr. 18(4) (2014) 04013058.

DOI: 10.1061/(asce)cc.1943-5614.0000376

[4] Lim, J.C. and T. Ozbakkaloglu, Design model for FRP-confined normal- and high-strength concrete square and rectangular columns, Mag. Conc. Res. 66(20) (2014) 1020-1035.

DOI: 10.1680/macr.14.00059

[5] Ilki, A., et al., FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns, ASCE J. Mater. Civ. Eng. 20(2) (2008) 169 - 188.

DOI: 10.1061/(asce)0899-1561(2008)20:2(169)

[6] Rousakis, T. and A. Karabinis, Substandard reinforced concrete members subjected to compression: FRP confining effects., Mater. Struct. 41(9) (2008) 1595 - 1611.

DOI: 10.1617/s11527-008-9351-4

[7] Wang, Z., et al., CFRP-confined square RC columns. I: Experimental investigation, ASCE, J. Compos. Constr. 16(2) (2012) 150 - 160.

DOI: 10.1061/(asce)cc.1943-5614.0000245

[8] Ozbakkaloglu, T. and T. Xie, Geopolymer Concrete-Filled FRP Tubes: Behavior of Circular and Square Columns under Axial Compression, Compos. Part B 96 (2016) 215-230.

DOI: 10.1016/j.compositesb.2016.04.013

[9] Xie, T. and T. Ozbakkaloglu, Behavior of Recycled Aggregate Concrete-Filled Basalt and Carbon FRP Tubes, Constr. Build. Mater. 105 (2016) 132-143.

DOI: 10.1016/j.conbuildmat.2015.12.068

[10] Fam, A. and S. Rizkalla, Behavior of axially loaded concrete-filled circular fiber-reinforced polymer tubes, ACI Struct. J. 98(3) (2001).

DOI: 10.14359/10217

[11] Ozbakkaloglu, T. and T. Vincent, Axial compressive behavior of circular high-strength concrete-filled FRP tubes, ASCE, J. Compos. Constr. 18(2) (2014) 04013037.

DOI: 10.1061/(asce)cc.1943-5614.0000410

[12] Vincent, T. and T. Ozbakkaloglu, Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: an experimental study, ASCE, J. Compos. Constr. 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029 (2015).

DOI: 10.1061/(asce)cc.1943-5614.0000489

[13] Lim, J.C. and T. Ozbakkaloglu, Influence of Concrete Age on Stress-Strain Behavior of FRP-Confined Normal- and High-Strength Concrete, Constr. Build. Mater. 82 (2015) 61-70.

DOI: 10.1016/j.conbuildmat.2015.02.020

[14] Vincent, T. and T. Ozbakkaloglu, Influence of overlap configuration on compressive behavior of CFRP-confined normal- and high-strength concrete, Mater. Struct. 49(4) (2016) 1245-1268.

DOI: 10.1617/s11527-015-0574-x

[15] Mirmiran, A., et al., Effect of Column Parameters on FRP-confined Concrete., ASCE J. Compos. Constr. 2(4) (1998) 175 - 185.

[16] Pessiki, S., et al., The axial behavior of concrete confined with fiber reinforced composite jackets., ASCE J. Compos. Constr. 5(4) (2001) 237 - 245.

[17] Ozbakkaloglu, T., Concrete-filled FRP tubes: Manufacture and testing of new forms designed for improved performance, ASCE, J. Compos. Constr. 17(2) (2013) 280-291.

DOI: 10.1061/(asce)cc.1943-5614.0000334

[18] Lam, L. and J.G. Teng, Design-oriented stress-strain model for FRP-confined concrete., Constr. Build. Mater. 17(6&7) (2003) 471 - 489.

DOI: 10.1016/s0950-0618(03)00045-x

[19] Vincent, T. and T. Ozbakkaloglu, Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: An experimental study on interface gap effect, Constr. Build. Mater. 75 (2015) 144 - 156.

DOI: 10.1016/j.conbuildmat.2014.10.038

[20] Vincent, T. and T. Ozbakkaloglu, Compressive behavior of prestressed high-strength concrete-filled aramid FRP tube columns: Experimental observations, ASCE, J. Compos. Constr. 10. 1061/(ASCE)CC. 1943-5614. 0000556 (2015) 04015003.

DOI: 10.1061/(asce)cc.1943-5614.0000556

[21] Bissonnette, B., P. Pierre, and M. Pigeon, Influence of key parameters on drying shrinkage of cementitious materials., Cem. Concr. Res. 29(10) (1999) 1655-1662.

DOI: 10.1016/s0008-8846(99)00156-8

[22] Kwan, A., W. Fung, and H. Wong, Shrinkage of high-strength concrete and high-flowability concrete, HKIE Transactions 17(3) (2010) 25-33.

[23] Vincent, T. and T. Ozbakkaloglu, Influence of concrete strength and confinement method on axial compressive behavior of FRP-confined high- and ultra high-strength concrete, Compos. Part B 50 (2013) 413-428.

DOI: 10.1016/j.compositesb.2013.02.017

[24] Lim, J.C. and T. Ozbakkaloglu, Unified Stress-strain model for FRP and actively confined normal-strength and high-strength concrete, ASCE, J. Compos. Constr. 10. 1061/(ASCE)CC. 1943-5614. 0000536 (2014) 04014072.

DOI: 10.1061/(asce)cc.1943-5614.0000536

[25] Lim, J.C. and T. Ozbakkaloglu, Hoop strains in FRP-confined concrete columns: experimental observations, Mater. Struct. (2015) 10. 1617/s11527-014-0358-8.

DOI: 10.1617/s11527-014-0358-8

[26] Lim, J.C. and T. Ozbakkaloglu, Influence of silica fume on stress-strain behavior of FRP-confined HSC, Constr. Build. Mater. 63 (2014) 11-24.

DOI: 10.1016/j.conbuildmat.2014.03.044

In order to see related information, you need to Login.