Microstructural and Nonlinear Properties of Zn-V-Mn-Nb-O Varistor Ceramics with Gd2O3 Substitution for Low Voltage Application


Article Preview

The effect of Gd2O3 substitution on the microstructural and electrical properties of Zn-V-Mn-Nb-O varistor ceramics sintered at 900°C was investigated. XRD, SEM, and EDAX results show that the GdMnO3 and GdVO4 phases formed at the grain boundaries and triple point junctions. Gd2O3 substitution inhibited the grain growth from 3.85 to 3.06 μm and increased the sintered ceramics density from 5.12 to 5.19 g/cm3. The samples containing the amount of 0.03 mol% Gd2O3 exhibit an optimum nonlinear coefficient α value which is 9.91, highest breakdown electrical field which is 88.48 V/mm and lowest leakage current density which is 0.11 mA/cm2 in low voltage application.



Solid State Phenomena (Volume 268)

Edited by:

Md Rahim Sahar and Md Supar Rohani




N. H. Isa et al., "Microstructural and Nonlinear Properties of Zn-V-Mn-Nb-O Varistor Ceramics with Gd2O3 Substitution for Low Voltage Application", Solid State Phenomena, Vol. 268, pp. 181-185, 2017

Online since:

October 2017




* - Corresponding Author

[1] L.M. Levinson, H.R. Phillip, Zinc oxide varistors- A review, J. Am. Ceram. Soc. Bull., 65 (1986) 639-646.

[2] K. Mukae, Zinc oxide varistors with praseodymium oxide, J. Am. Ceram. Soc. Bull., 66 (1987) 1329-1331.

[3] T.K. Gupta, Application of zinc oxide varistor, J. Am. Ceram. Soc., 73 (1990) 1817-1840.

[4] C.W. Nahm, B.C. Shin, Highly stable nonlinear properties of ZnO–Pr6O11–CoO– Cr2O3– Y2O3-based varistor ceramics, Mater. Lett., 57 (2003) 1322–1326.

DOI: https://doi.org/10.1016/s0167-577x(02)00980-1

[5] P. Cheng, S. Li, M.A. Alim, Soft core behavior in ZnO–Bi2O3-based varistors containing oxides of Ce and Gd, Phys. Stat. Sol., 204 (2007) 887–899.

DOI: https://doi.org/10.1002/pssa.200622180

[6] Hng, H.H., L. Halim, Grain growth in sintered ZnO–1 mol% V2O5 ceramics, Mater. Lett., 57 (2003) 1411 –1416.

DOI: https://doi.org/10.1016/s0167-577x(02)00999-0

[7] H.H. Hng, K.Y. Tse, Effects of MgO doping in ZnO–0. 5 mol% V2O5 varistors, Ceram. Intern., 34 (2008) 1153–1157.

DOI: https://doi.org/10.1016/j.ceramint.2007.02.004

[8] C.W. Nahm, Er2O3 Doping Effect on Electrical Properties of ZnO–V2O5–MnO2–Nb2O5 Varistor Ceramics, J. Am. Ceram. Soc., 94 (2011) 3227–3229.

DOI: https://doi.org/10.1111/j.1551-2916.2011.04812.x

[9] C.W. Nahm, Effect of Dy2O3 doping on microstructure, electrical and dielectric properties of ZnO–V2O5-based varistor ceramics, J. Mater. Sci.: Mater. Electron. 26 (2015) 10217–10224.

DOI: https://doi.org/10.1007/s10854-015-3874-6

[10] C.W. Nahm, Effect of gadolinia addition on varistor characteristics of vanadium oxide–doped zinc oxide ceramics, J. Mater. Sci.: Mater. Electron. 24 (2013) 4839–4846.

DOI: https://doi.org/10.1007/s10854-013-1485-7

[11] S. Pandey, D. Kumar, O. Parkash, Electrical impedance spectroscopy and structural character -ization of liquid-phase sintered ZnO–V2O5–Nb2O5 varistor ceramics doped with MnO, Ceram. Inter., 42 (2016) 9686–9696.

DOI: https://doi.org/10.1016/j.ceramint.2016.03.057

[12] R. Zahid, Z. Azmi, M.G.M. Sabri, Photopyroelectric Spectroscopic Studies of ZnO-MnO2–Co3O4 –V2O5 Ceramics. Int. J. Mol. Sci., 12 (2011) 1625-1632.

DOI: https://doi.org/10.3390/ijms12031625

[13] J.F. Wang, H.C. Chen, W.B. Su, G.Z. Zang, C.J. Zhang, C.M. Wang, P. Qi, (Gd, Co, Ta)-Doped SnO2 Varistor Ceramics, J. Electroceram., 14 (2005) 133–137.

DOI: https://doi.org/10.1007/s10832-005-0876-4

[14] X.S. Yang, Y. Wang, L. Dong, WO3-based capacitor–varistor doped with Gd2O3, Mater Chem Phys, 86 (2004) 253–257.

DOI: https://doi.org/10.1016/j.matchemphys.2003.11.042

[15] J.C. Wurst, J.A. Nelson, Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J. Am. Ceram. Soc., 55 (1972) 109-111.

DOI: https://doi.org/10.1111/j.1151-2916.1972.tb11224.x

[16] W.R.W. Abdullah, A. Zakaria, M. Hashim, M.M. Rahman, M.S.M. Ghazali, Stability of ZnO-Pr6O11-Cr2O3 Varistor Ceramics against Electrical Degradation, Mater. Sci. For., 846 (2016) 115-125.

DOI: https://doi.org/10.4028/www.scientific.net/msf.846.115