DC and Thermal Conductivity of Lithium Zinc Phosphate Glasses


Article Preview

The phosphate glasses, with composition (60-x)P2O5-25ZnO-(15+x)Li2O where 0.0 ≤ x ≤ 5.0 mol% are prepared by conventional melt quenching method. The amorphous nature of the glass is determined by X-Ray Diffraction (XRD). The physical properties are measured in term of their density and molar volume. Glass density is found to increase from 2.700 to 2.785 g cm-3 whereas molar volume is found to decrease from 40.735 to 37.488 cm3 mol-1 with respect to Li2O content. The DC measurements are done by using four point probes and the activation energies are determined. Arrhenius plot shows straight line behavior as observed that confirmed the conductivity increased with Li2O content. The activation energy is found to decreases from 0.75 to 0.08 eV as Li2O content is increased in the temperature range from 310 to 420 K. Measurements of the thermal conductivity using Lee’s disc apparatus have been made. It is observed that the maximum and minimum thermal conductivity are 0.2679 and 0.2168 W m-1 K-1 respectively.



Solid State Phenomena (Volume 268)

Edited by:

Md Rahim Sahar and Md Supar Rohani




A.M. Hilman et al., "DC and Thermal Conductivity of Lithium Zinc Phosphate Glasses", Solid State Phenomena, Vol. 268, pp. 198-204, 2017

Online since:

October 2017




* - Corresponding Author

[1] Babita Tiwari, Anupam Dixit, G. P. Kothiyal, M. Pandey, S. K. Deb (2007), Preparation and Characterization of Phosphate Glasses Containing Titanium, vol. 285.

[2] Mohd Hafiz Mohd Zaid, Khamirul Amin Matori, Sidek Hj. Abdul Aziz, Azmi Zakaria, Mohd Sabri Mohd Ghazali (2012).

DOI: https://doi.org/10.3390/ijms13067550

[3] Goutam Hazra, Patit Paban Malik, Partha Mitra, Tanmoy Das (2014).

[4] Shashidhar Bale and Syed Rahmad (2013), Role of ZnO in Dc Electrical Conductivity of Lithium Bismuthate Glasses, ISRN Materials Science, vol. 2013, p.9.

DOI: https://doi.org/10.1155/2013/126805

[5] Jeppe C. Dyre, Philipp Maass, Bernhard Roling, David L. Sidebottom (2009), Fundamental Questions Relating to Ion Conduction in Disordered Solids, pp.1-15.

DOI: https://doi.org/10.1088/0034-4885/72/4/046501

[6] U. B. Chanshetti, V. A. Shelke, S. M. Jadhav, S. G. Shankarwar, T. K. Chondhaker, A. G. Shankarwar, V. Sudarsan, M. S. Jogad (2011), Density and Molar Volume Studies of Phosphate Glasses, Physics, Chemistry and Technology, vol. 9, pp.29-36.

DOI: https://doi.org/10.2298/fupct1101029c

[7] E. S. Sazali, M. R. Sahar, S. K. Ghoshal, R. Arifin, M. S. Rohani, A. Awang (2014), Optical properties of gold nanoparticle embedded Er3+ doped lead-tellurite glasses, Journal of Alloys and Compounds, vol. 607, pp.85-90.

DOI: https://doi.org/10.1016/j.jallcom.2014.03.175

[8] M. R. S. Nasuha, K. Azman, H. Azhan, S. A. Senawi, A. Mardhiah (2016), The Preparation and Physical Characteristic of Sm3+ Doped Borotellurite Glass, Materials Science Forum, vol. 846, pp.67-74.

DOI: https://doi.org/10.4028/www.scientific.net/msf.846.69

[9] Lahcen Bih, H. Biha, M. Amalhay, H. Mossadik, A. Elbouari, B. Belhorma, M.P.F. Graça, M.A. Valente (2014), Phosphate Glass-glasses as New Energy Density Dielectric Materials, vol. 83, pp.371-377.

DOI: https://doi.org/10.1016/j.proeng.2014.09.030

[10] Jean-Louis Souquet, Marcio Luis Ferreira Nascimento, Ana Candida Martins Rodrigues (2010), Charge Carrier Concentration and Mobility in Alkali Silicates, The Journal of Chemical Physics, vol. 132.

DOI: https://doi.org/10.1063/1.3271154

[11] K. Abich, A. Keil, D. Reiss, Ch Wunderlich, W. Neuhauser, P. E. Toschek (2004), Thermally Activated Hopping of Two Ions Trapped in a Bistable Potential Well, Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, pp.18-23.

DOI: https://doi.org/10.1088/1464-4266/6/3/004

[12] S. Rani, S. Sanghi, A. Agarwal, V. P. Seth (2009), Study of Optical Band Gap and FTIR Spectroscopy of Li2O·Bi2O3·P2O5 glasses, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 74, pp.673-677.

DOI: https://doi.org/10.1016/j.saa.2009.07.023

[13] Junghwoon Lee, Tae Sup Yun, and Sung-Uk Choi (2015), The Effect of Particle Size on Thermal Conduction in Granular Mixtures, Materials, vol. 8, pp.3975-3991.

DOI: https://doi.org/10.3390/ma8073975