Heat Treatment of Al-Si-Cu Alloys

Abstract:

Article Preview

The aim of the presented work is an effort to answer the research questions, i.e. how to determine the optimal supersaturation temperature for multicomponent alloys? What is the relationship between changes in the derivative curve of composites and the relationship between their chemical composition and microstructure? Searching for the right answer to the above questions was the basis for determining the scope and methodology of the presented work. To describe the phenomena that occur in the material during solidification under various conditions caused by the variable cooling rate and variable chemical composition it was decided to use thermal-derivative analysis methods. The mentioned method allows to accurately describe and interpret the kinetics of the crystallization of the tested materials. This method is often used in the search for new directions of modern technologies, attractive from both experimental and cognitive. This methodology allows to determine the relationship between crystallization kinetics and usable casting properties on the example of Al-Si-Cu alloys and other alloying elements.

Info:

Periodical:

Solid State Phenomena (Volume 275)

Edited by:

Prof. Tomasz Tański and Przemysław Snopiński

Pages:

15-29

Citation:

M. Krupiński et al., "Heat Treatment of Al-Si-Cu Alloys", Solid State Phenomena, Vol. 275, pp. 15-29, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] P. Pearson, L.D. Calvert: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd Edition, ASM International, Materials Park, Ohio, (1991).

[2] Z. Poniewierski: Crystallization of silumin structure and properties, WNT, Warsaw 1989 (in Polish).

[3] A. M. Samuel, A. Gotmare, F. H. Samuel: Effect of Solidification Rate and Metal Feedability on Porosity and SiC/Al2O3 Particle Distributing in an Al-Si-Mg (359) Alloy, Composite Science and Technology, (1994).

[4] S.G. Shabestari, H. Moemeni: Effect of Copper and Solidification Conditions on the Microstructure and Mechanical Properties of Al–Si–Mg Alloys, Journal of Materials Processing Technology, (2004).

[5] R. Władysiak: Ocena metodą anality termiczno – derywacyjnej (ATD) Procesu krystalizacji, struktury i własności stopów Al-Si z dodatkiem Mg, Cu, Ni, Fe modyfikowanych Sr, P, Ti, B, Praca Doktorska niepublikowana, Biblioteka Politechnik Łódzkiej, Łódź, (1996).

[6] L. Andberg, L. Bäckerud, A. Dahle: Castability of Aluminium Foundry Alloys, AFS Research Raptor, Illinois, (1999).

[7] C.H. Cáceres, M.B. Djurdjevic, T.J. Stockwell, J.H. Sokołowski: The Effect Of Cu Content On The Level Of Microporosity In Al-Si-Cu-Mg Casting Alloys, Scripta Materialia, (1999).

[8] M.B. Djurdjevic, W.T. Kierkus, J.H. Sokolowski: Analysis of the Solidification Path of the 3XX Family of Aluminum Alloys", Technical Report submitted to the NEMAK Canada Corporation, Windsor, October (2002).

[9] M.B. Djurdjevic, Francis, R., J.H. Sokolowski , B. Djuric: Effect of Chemistry and Cooling Rate on the SDAS of the Hypoeutectic 3XX Aluminum Alloy, Proceedings of the 2nd International Symposium Light Metal and Composite Materials" Belgrade, (2004).

[10] Ch. Venkata Rao, G. Madhusudhan Reddy, K. Srinivasa Rao: Influence of tool pin profile on microstructure and corrosion behaviour of AA2219 Al-Cu alloy Friction Stir Weld Nuggets, Defense Technology 11, 2015, 197-208.

[11] L.A. Dobrzański: Metal engineering materials, WNT, Warszawa, 2004 (in Polish).

[12] S. Pietrowski: Characteristic features of silumin alloys crystallization, Materials & Design 18, 1997, pp.379-383.

[13] R. Schmid-Fetze, J. Gröbner: Thermodynamic Database for Mg Alloys—Progress in Multicomponent Modeling, Metals 2012, 2(3), 377-398.

[14] A. Janz, J. Gröbner, D. Mirkovic; M. Medraj; J. Zhu; Y.A. Chang, R. Schmid-Fetzer: Experimental study and thermodynamic calculation of Al-Mg-Sr phase equilibria. Intermetallics 2007, 15, 506–519.

[15] L. Andberg, L. Bäckerud, G. Chai, J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 3, AFS, Illinois, (1996).

[16] L. Bäckerud, E. Król, J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 1, SKANALUMINIUM, Oslo, (1986).

[17] L. Bäckerud, G. Chai, J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 2, AFS/SKANALUMINIUM, Illinois, (1990).

[18] R.G. Maev, J.H. Sokolowski, H.T. Lee, E.Y. Maeva, A.A. Denissov: Bulk and subsurface structure analysis of the 319 aluminum casting using acoustic microscopy methods, Materials Characterization 46, 2001, p.263– 269.

[19] T. Tanski, K. Labisz, B. Krupinska, M. Krupinski, M. Krol, R. Maniara, W. Borek: Analysis of crystallization kinetics of cast aluminum-silicon alloy, Journal of Thermal Analysis and Calorimetry 123/1, 2016, pp.63-74.

[20] L.A. Dobrzanski, M. Krupinski, K. Labisz, B. Krupinska, A. Grajcar: Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis, Materials Science Forum 638-642, 2010, p.475.

[21] L.A. Dobrzanski, R. Maniara, J.H. Sokolowski, W. Kasprzak, M. Krupinski, Z. Brytan: Applications of the artificial intelligence methods for modeling of the ACAlSi7Cu alloy crystallization process, Journal of Materials Processing Technology 192, 2007, pp.582-587.

[22] E. Fraś: Crystallization of metals, WNT, Warsaw 2003 (in Polish).

[23] Z. Górny: Foundry non-ferrous alloys, WNT, Warsaw 1992 (in Polish).

[24] M.B. Djurdjevic, R. Francis, J.H. Sokolowski, D. Emadi, M. Sahoo: Comparison of Different Analytical Methods for the Calculation of the Latent Heat of Solidification of 3XX Aluminum Alloys, Materials Science and Engineering A386, (2004).

[25] R. Maniara: Crystallization kinetics and the structure of Al-Si-Cu casting alloys, PhD thesis, 2006 (in Polish).

Fetching data from Crossref.
This may take some time to load.