Effect of ECAP Strain on the Precipitation Kinetics of the AlMg3 Aluminium Alloy

Abstract:

Article Preview

Variation of hardness and microstructure evolution in a solution treated AlMg3 aluminium processed by equal channel angular pressing and subjected to subsequent artificial ageing are investigated. The microstructure features of the UFG aluminium alloy are studied by light, electron microscopy and using X-ray diffraction analysis. Microstructural observations showed significant grain refinement. After four ECAP passes microstructure consist of elongated grains with average widths of shear bands of ∼100 nm. A significant increase in the microhardness was observed in the ECAPed samples due to the grain refinement and strain hardening. Prior ECAP solution treatment and a short time artificial ageing can additionally increase the strength of AlMg3 aluminium alloy.

Info:

Periodical:

Solid State Phenomena (Volume 275)

Edited by:

Prof. Tomasz Tański and Przemysław Snopiński

Pages:

3-14

Citation:

P. Snopiński and T. Tański, "Effect of ECAP Strain on the Precipitation Kinetics of the AlMg3 Aluminium Alloy", Solid State Phenomena, Vol. 275, pp. 3-14, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] G.E. Totten, D.S. MacKenzie, Handbook of Aluminum: Physical Metallurgy and Processes, Marcel Dekker, New York, USA (2003).

[2] I.J. Polmear, Light Alloys – Metallurgy of the Light Metals, (3rd ed)Arnold, a Division of Hodder Headline PLC, London (1995).

[3] M. Zha, Y. Li, R. H. Mathiesen, R. Bjørge, H. J. Roven, Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing, Acta Mater. 84 (2015) 42-54.

DOI: https://doi.org/10.1016/j.actamat.2014.10.025

[4] R. Kapoor, Chapter 20 - Severe Plastic Deformation of Materials, Editor(s): A.K. Tyagi, S. Banerjee, Materials Under Extreme Conditions, Elsevier, 2017, 717-754.

DOI: https://doi.org/10.1016/b978-0-12-801300-7.00020-6

[5] I. Sabirov, M.Yu. Murashkin, R.Z. Valiev, Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng. A. 560 (2013), 1-24.

DOI: https://doi.org/10.1016/j.msea.2012.09.020

[6] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45 (2000) 103–89.

DOI: https://doi.org/10.1016/s0079-6425(99)00007-9

[7] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A. 137 (1991) 35–40.

DOI: https://doi.org/10.1016/0921-5093(91)90316-f

[8] H. Bisadi, M.R. Mohamadi, H. Miyanaji, M. Abdoli, A Modification on ECAP Process by Incorporating Twist Channel, J. Mater. Eng. Perform. 22 (2013) 875–881.

DOI: https://doi.org/10.1007/s11665-012-0323-z

[9] J.K Kim, H.G Jeong, S.I Hong, Y.S Kim, W.J Kim, Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing, Scr. Mater. 45 (2001) 901-907.

DOI: https://doi.org/10.1016/s1359-6462(01)01109-5

[10] W.J. Kim, C.S. Chung, D.S. Ma, S.I. Hong, H.K. Kim, Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging, Scr. Mater. 49 (2003) 333-338.

DOI: https://doi.org/10.1016/s1359-6462(03)00260-4

[11] M. Hockauf; L.W., Meyer; B. Zillmann; M. Hietschold; S. Schulze; L. Krüger, Simultaneous improvement of strength and ductility of Al–Mg–Si alloys by combining equal-channel angular extrusion with subsequent high-temperature short-time aging. Mater. Sci. Eng. A. 503 (2009).

DOI: https://doi.org/10.1016/j.msea.2008.02.051

[12] L. Zhen, W.D. Fei, S.B. Kang, H.W. Kim, Precipitation behaviour of Al-Mg-Si alloys with high silicon content, J. Mater. Sci. 32 (1997) 1895–(1902).

[13] M. R. Rezaei, M. R. Toroghinejad, F. Ashrafizadeh, Effects of ARB and ageing processes on mechanical properties and microstructure of 6061 aluminum alloy, J. Mater. Process. Technol. 211 (2011) 1184-1190.

DOI: https://doi.org/10.1016/j.jmatprotec.2011.01.023

[14] J.J. Gracio, F. Barlat, E.F. Rauch, P.T. Jones, V.F. Neto, A.B. Lopes, Artificial aging and shear deformation behaviour of 6022 aluminium alloy, Int. J Plast. 20 (2004) 427-445.

DOI: https://doi.org/10.1016/s0749-6419(03)00095-0

[15] L.J Zheng, C.Q Chen, T.T Zhou, P.Y Liu, M.G Zeng, Structure and properties of ultrafine-grained Al-Zn-Mg-Cu and Al-Cu-Mg-Mn alloys fabricated by ECA pressing combined with thermal treatment, Mater. Charact. 49 (2002) 455-461.

DOI: https://doi.org/10.1016/s1044-5803(03)00069-x

[16] T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing, Mater. Manuf. Process, 32 (2017) 1–7.

DOI: https://doi.org/10.1080/10426914.2016.1257131

[17] T. Tański, P. Snopiński, W. Pakieła, W. Borek, K. Prusik, S. Rusz, Structure and properties of AlMg alloy after combination of ECAP and post-ECAP ageing, Arch. Civ. Mech. Eng. 16 (2016) 325–334.

DOI: https://doi.org/10.1016/j.acme.2015.12.004

[18] P. Snopiński, T. Tański, O. Hilser, W. Matysiak, M. Wiśniowski, Ł. Krzemiński, Effect of equal channel angular pressing combined with heat treatment on structure and properties of AlMg3 aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering, 73(1), 2015, 36-44.

[19] T. Tański, P. Snopiński, K. Prusik, M. Sroka, The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al-3%Mg aluminium alloy, Mater. Charact. 133 (2017) 185-195.

DOI: https://doi.org/10.1016/j.matchar.2017.09.039

[20] T. Ungár, L. Balogh, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon, Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion, Mater. Sci. Eng. A. 444 (2007) 153–156.

DOI: https://doi.org/10.1016/j.msea.2006.08.059