Solidification Characteristics of Mg-Li-Al Alloys


Article Preview

The six Mg-Li and Mg-Li-Al alloys in as-cast state namely Mg-4.5%Li, Mg-9%Li, Mg-12%Li, Mg-4.5%Li-1.5%Al, Mg-9%Li-1.5%Al and Mg-12%Li-1.5%Al were prepared and analysed. These alloys have been subjected to the thermal analysis (thermal derivative-analysis and dilatometry study), and the subsequent thermal assessment, mechanical properties and microstructures were studied. The heating and cooling dilatometric curves characterise by a linear reduction (alloys with 12wt.% of Li) and linear increase (alloys with 4.5wt.% of Li) in coefficient of linear thermal expansion as a function of temperature. No transitions in the solid state occur. Based on results of thermal derivative analysis a crystallisation process of Mg-Li and Mg-Li-Al alloys was proposed. Addition of aluminium in ultra-light Mg-Li alloys shows considerably improved strengthening without a reduction in grain size. Increasing the lithium content causes in an increase of hardness.



Solid State Phenomena (Volume 275)

Edited by:

Prof. Tomasz Tański and Przemysław Snopiński




M. Król, "Solidification Characteristics of Mg-Li-Al Alloys", Solid State Phenomena, Vol. 275, pp. 41-52, 2018

Online since:

June 2018





* - Corresponding Author

[1] C. Xianhua, G. Yuxiao, P. Fusheng, Research Progress in Magnesium Alloys as Functional Materials. Rare. Metal. Mat. Eng. 45/9 (2016) 2269-2274.


[2] F. Pan, M. Yang, X. Chen, A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 32 (2016) 1211-1221.

[3] A. Zieliński, M. Sroka, M. Miczka, A. Śliwa, Forecasting the particle diameter size distribution in P92 (X10CRWMOVNB9-2) steel after long-term ageing at 600 and 650°C. Arch. Metall. Mater. 61/2A (2016) 753-760.


[4] F. Yavari, S. G. Shabestari, Effect of cooling rate and Al content on solidification characteristics of AZ magnesium alloys using cooling curve thermal analysis. J. Therm. Anal. Calorim. 129 (2017) 655-662.


[5] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Influence of high strain rates on the structure and mechanical properties of high‐manganes austenitic TWIP‐type steel. Materialwiss. Werkst. 47/5-6 (2016) 428-435.


[6] M. Shalbafi, R. Roumina, R. Mahmudi, Hot deformation of the extruded Mg-10Li-1Zn alloy: Constitutive analysis and processing maps. J. Alloy. Compd. 696 (2017) 1269-1277.


[7] W.J. Joost, P.E. Krajewski, Towards magnesium alloys for high-volume automotive applications. Scripta. Mater. 128 (2017) 107-112.


[8] M. Król, T. Mikuszewski, D. Kuc, T. Tański, E. Hadasik, Thermal assessment of modified ultra-light magnesium-lithium alloys. Arch. Metall. Mater. 62/4 (2017) 2433-2440.


[9] R. Ahmad, Z.M. Sheggaf, M.B.A. Asmael, M.Z. Hamzah, Effect of rare earth addition on solidification characteristics and microstructure of ZRE1 magnesium cast alloy. Adv. Mat. Res. (2017).


[10] M. Król, Effect of grain refinements on the microstructure and thermal behaviour of mg-li-al alloy, J. Therm. Anal. Calorim. in print.


[11] M. Krupiński, K. Labisz, T. Tański, B. Krupińska, M. Król, M. Polok-Rubiniec, Influence of Mg addition on crystallisation kinetics and structure of the Zn-Al-Cu alloy. Arch. Metall. Mater. 61/2 (2016) 785-790.


[12] H. Jafari, M. Khalilnezhad, S. Farahany, Computer-aided cooling curve thermal analysis and microstructural evolution of Mg-5Zn-xY cast alloys. J. Therm. Anal. Calorim. 130/3 (2017) 1429-1437.


[13] Z.M. Sheggaf, R. Ahmad, M.B.A. Asmael, A.M.M. Elaswad, Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents. Int. J. Min. Met. Mater. 24/11 (2016) 1306-1320.


[14] A. A. Nayeb-Hashemi, , J. B. Clark, A.D. Pelton, Bulletin of Alloy Phase Diagrams, 5/4 (1984) 365-374.