Atomic Layer Deposition of TiN below 600 K Using N2H4

Abstract:

Article Preview

Atomic layer deposition (ALD) was used to grow titanium nitride (TiN) on SiO2 with TiCl4 and N2H4. X-ray photoelectron spectroscopy (XPS) and ellipsometry were used to characterize film growth. A hydrogen-terminated Si (Si-H) surface was used as a reference to understand the reaction steps on SPM cleaned SiO2. The growth rate of TiN at 573 K doubled on Si-H compared to SiO2 because of the formation of Si-N bonds. When the temperature was raised to 623 K, O transferred from Ti to Si to form Si-N when exposed to N2H4. Oxygen and Ti could be removed at 623 K by TiCl4 producing volatile species. The added surface reactions reduce the Cl in the film below detection limits.

Info:

Periodical:

Solid State Phenomena (Volume 282)

Edited by:

Paul Mertens, Marc Meuris and Marc Heyns

Pages:

232-237

Citation:

A. Hinckley and A. Muscat, "Atomic Layer Deposition of TiN below 600 K Using N2H4", Solid State Phenomena, Vol. 282, pp. 232-237, 2018

Online since:

August 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] K. Choi, P. Lysaght, H. Alshareef, C. Huffman, H.-C. Wen, R. Harris, H. Luan, P.-Y. Hung, C. Sparks, M. Cruz, K. Matthews, P. Majhi, and B. H. Lee: Thin Solid Films 486 (2005), p.141.

DOI: https://doi.org/10.1016/j.tsf.2004.11.239

[2] H. Van Bui, A. W. Groenland, A. A. I. Aarnink, R. A. M. Wolters. J. Schmitz, and A. Y. Kovalgin: J. Electrochem. Soc. 158 (2011), p. H214.

[3] J. Meersschaut, M. Kayhko, H.P. Lenka, T. Witters, Q. Zhao, A. Vantomme and W. Vandervorst: AIP Conf. Proc. 1525 (2013), p.190.

[4] M.B. Lee, H. Lee, B. Park, U. Chung, Y. Koh and M.Y. Lee.: Intl. Electron. Devices, Tech. Digest (1996), p.683.

[5] Y.J. Kim, D. Lim, H.H. Han, A.S. Sergeevich, Y. Jeon, J.H. Lee, S.K. Son, and C. Choi: Microelectron. Eng. 178 (2017), p.284.

[6] D. Alvarez, J. Spiegelman, K. Andachi, R. Holmes, M. Raynor, and H. Shimizu: 28th Ann. SEMI Adv. Semi. Manufact. Conf. (2017), p.426.

[7] D. Alvarez, J. Spiegelman, R. Holmes, K. Andachi, M. Raynor and H. Shimizu: ECS Trans. 77 (2017), p.219.

DOI: https://doi.org/10.1149/07705.0219ecst

[8] C.C. Finstad, G. Montano-Mirada, A.G. Thorsness, and A.J. Muscat: Rev. Sci. Instr. 77 (2006), p.093907/1.

[9] J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben: Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, Inc., Eden Prairie, MN, USA, 1995).

[10] X. Sun, H.T. Liu and H.F. Chang: RSC Adv. 7 (2017), p.47833.

[11] F. Lu and H.Y. Chen: Surf. And Coat. Technol. 130 (2000), p.290.

[12] H. Van Bui, A.Y. Kovalgin and R.A.M. Wolters: ECS J. Sol. State Sci. Technol. 1 (2012), p. P285.

[13] C.D. Wagner: J. Electron. Spect. And Rel. Phenom. 32 (1983), p.99.

[14] G. Greczynski and L. Hultman: Appl. Surf. Sci. 387 (2016), p.294.

[15] Z. Hu and C.H. Turner: J. Phys. Chem. B 110 (2006), p.8337.

[16] B. Granados-Alpizar and A.J. Muscat: Surf. Sci. 605 (2011), p.1243.