Effect of Nano-SiC on Microstructure and Mechanical Properties of AZ91 Magnesium Alloy Processed by Thixomolding

Abstract:

Article Preview

Magnesium injection molding technology was used to produce Mg based nanocomposites. AZ91 chips were mixed with 5 wt.% of β-SiC nanoparticles in solid state and fed to pre-heated cylinder of prototype injection molding machine. Using screw rotation, granules were transferred to nozzle area at simultaneous intensive shearing and mixing of slurry containing reinforcement phases. Injection process was conducted at 595 °C, which corresponded to about 90% liquid phase and cast to steel die preheated to 150 °C. Detailed characterization of microstructure was performed using SEM and TEM microscopes. Composite microstructure consisted of α(Mg) globular grains with size of about 60 μm and volume of 7-10% surrounded by mixture of proeutectic magnesium solid solution with irregular shape and average size of 12 μm as well as fine eutectic mixture (α(Mg) + β-Mg17Al12). Additionally, TEM-BF image showed β-SiC nanoparticles with size of 20-50 nm in the area of eutectic. Hardness and compression strength of AZ91 nanocomposites increased from 58 to 75 HV and from 200 to 235 MPa, respectively.

Info:

Periodical:

Solid State Phenomena (Volume 285)

Edited by:

Qiang Zhu, Ahmed Rassili, Stephen P. Midson and Xiao Gang Hu

Pages:

133-138

Citation:

Ł. Rogal et al., "Effect of Nano-SiC on Microstructure and Mechanical Properties of AZ91 Magnesium Alloy Processed by Thixomolding", Solid State Phenomena, Vol. 285, pp. 133-138, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] K.U. Kainer, Magnesium Alloys and Their Applications, Wiley-VCH, Weinheim, (2000).

[2] M. Zheng, K. Wu, C. Yao, Effect of interfacial reaction on mechanical behavior of SiC/AZ91 magnesium matrix composites, Mater. Sci. Eng. A 318 (2001) 50.

DOI: https://doi.org/10.1016/s0921-5093(01)01338-7

[3] A. Tissier, D. Apelian, G. Regazzoni Magnesium rheocasting: a study of processing -microstructure interactions, Journal of Materials Science, 25/2 (1990) 1184–1196.

DOI: https://doi.org/10.1007/bf00585423

[4] Ł Rogal, F Czerwiński, L Lityńska-Dobrzyńska, P Bobrowski, A. Wierzbica-Miernik, J. Dutkiewicz, Effect of hot rolling and equal-channel angular pressing on generation of globular microstructure in semi-solid Mg-3% Zn alloy, Solid State Phenomena 217 (2015) 381-388.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.217-218.381

[5] Y. Jiao, J. Zhang, Y. Jing, C. Xu, S. Liu, L. Zhang, Development of highperformance Mg alloy via introducing profuse long period stacking ordered phase and stacking faults. Adv Eng Mater 17(6) (2015) 876–84.

DOI: https://doi.org/10.1002/adem.201400369

[6] F. Wu, J. Zhu, Y. Chen, G. Zhang, A Struct. Mater. Prop. Microstruct. Sci. Eng. A 277 (2000) 143.

[7] J.C. Viala, P. Fortier, G. Claveyrolas, H. Vincent, J. Bouix, Effect of magnesium on the composition, microstructure and mechanical properties of carbon fibers, J. Mater. Sci. 26 (1991) 4977.

DOI: https://doi.org/10.1007/bf00549880

[8] Y. Kagawa, E. Nakata, Some Mechanical Properties of Carbon Fibre - Reinforced Magnesium-Matrix Composite Fabricated by Squeeze Casting, J. Mater. Sci. 11 (1992) 176.

DOI: https://doi.org/10.1007/bf00724684

[9] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Development of Novel Carbon Nanotube Reinforced Magnesium Nanocomposites Using the Powder Metallurgy Technique, Nanotechnology 17 (2006) 7.

DOI: https://doi.org/10.1088/0957-4484/17/1/002

[10] H. J. Looney, MSJ. Particle distribution in cast metal matrix composites—Part I. J Mater Process Technol. 2002;123(2):251–7.

[11] H. Yan, Z-X. Huang, H.X. Qiu, Microstructure and Mechanical Properties of CNTs/A356 Nanocomposites Fabricated by High-Intensity Ultrasonic Processing, Metallurgical And Materials Transactions A, 48A (2017) 910-918.

DOI: https://doi.org/10.1007/s11661-016-3872-1

[12] P. Poddar, S. Mukherjee, K.L. Sahoo, The Microstructure and Mechanical Properties of Sic Reinforced Magnesium Based Composites by Rheocasting Process, J. Mater. Eng. Perform., 2009, 18(7) 849–855.

DOI: https://doi.org/10.1007/s11665-008-9334-1

[13] R. Decker, S. LeBeau, B. Wilson, J. Reagan, N. Moskovic, B. Bronfin, Thixomolding at 25 Years, Solid State Phenomena 256 (2016) 3-8.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.256.3

[14] A. Lohmüller, M. Scharrer, R. Jenning, C. Rauber, M. Loos, Advances in magnesium injection molding (Thixomolding®), Neue Materialien.

[15] F. Czerwinski, Magnesium Injection Molding, Springer, New York, (2008).

[16] Ł. Rogal, G. Korpala, J. Dutkiewicz, Evolution of microstructure in 100Cr6 steel after cooling from a thixoforming temperature to bainitic transformation ranges, Materials Science and Engineering: A, 624: 291-299, (2015).

DOI: https://doi.org/10.1016/j.msea.2014.11.055

[17] Ł Rogal, J Dutkiewicz, Deformation behavior of high strength X210CrW12 steel after semi-solid processing Materials Science and Engineering: A 603 (2014) 93-97.

DOI: https://doi.org/10.1016/j.msea.2014.01.099

[18] Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimoto, A. Koide, Multi-walled carbon nanotube-reinforced magnesium alloy composites, Scripta Materialia 58 (2008) 267–270.

DOI: https://doi.org/10.1016/j.scriptamat.2007.10.014

[19] M.J. Shen, X.J. Wang, T. Ying c, K. Wu, W.J. Song, Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles, Journal of Alloys and Compounds 686 (2016) 831-840.

DOI: https://doi.org/10.1016/j.jallcom.2016.06.232