SIMA Processing of Cu34wt.%Zn2wt.%Pb Brass Alloy

Abstract:

Article Preview

Effects of SIMA processing on size and shape of primary solid particles of Cu34wt.%Zn2wt.%Pb brass alloy was investigated. The optimal temperature for semisolid processing of the alloy was found to be around 890 °C using Thermo-calc simulation software. Liquid fraction sensitivity of the alloy around this temperature is 0.012. The results indicated the formation of non-dendritic microstructure even after 1 min holding of 10% cold worked sample at 890 °C. Sphericity of the primary solid particles increased by increasing the cold working ratio and holding time. The smallest size (103 μm) and highest shape factor (0.84) of the primary solid particles were achieved at 30% cold working ratio and 5 min holding time.

Info:

Periodical:

Solid State Phenomena (Volume 285)

Edited by:

Qiang Zhu, Ahmed Rassili, Stephen P. Midson and Xiao Gang Hu

Pages:

176-182

Citation:

H. Tavakkoli et al., "SIMA Processing of Cu34wt.%Zn2wt.%Pb Brass Alloy", Solid State Phenomena, Vol. 285, pp. 176-182, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] D.B. Spenser, R. Mehrabian, M.C. Flemings, Metall. Trans. A 3 (1972) 1925–(1932).

[2] M.C. Flemings, Metall. Trans. A 22 (1991) 957–981.

[3] D. H. Kirkwood, M. Su´ery., Kapranos P., H.V. Atkinson, K. P. Young, Semi-Solid Processing of Alloys, Springer, New York, (2009).

[4] Z. Fan, Semisolid Metal Processing, International Materials Review, Vol. 47, No. 2 (2002) 49 - 85.

[5] W.R. Loue, M. Suery, Mater. Sci. Eng. A 203 (1995) 1–13.

[6] T.W. Hong, S.K. Kim, H.S. Ha, M.G. Kim, D.B. Lee, Y.J. Kim, Mater. Sci. Technol. 16 (2000) 887–892.

[7] Q.C. Jiang, H.Y. Wang, J.G. Wang, P. Lu, Y. Wang, B.X. Ma, Mater. Sci. Eng. A 381 (2004) 223–229.

[8] K. Young ., Fine Grained Metal Composition, US Patent, No. 4(1983).

[9] B. Hassas - Irani, A. Zarei - Hanzaki, B. Bazaz, Roostaei A., Microstructure Evolution and Semisolid Deformation Behavior of an A356 Aluminum Alloy Processed by Strain Induced Melt Activated Method, Materials and Design, Vol. 46 (2013) 579 - 585, (2013).

DOI: https://doi.org/10.1016/j.matdes.2012.10.041

[10] M. C. Flemings, R. G. Riek, K. P. Young, Rheocasting, Materials Science and Engineering, Vol. 25(1976) 103 - 117.

DOI: https://doi.org/10.1016/0025-5416(76)90057-4

[11] E. Tzimas, A. Zavaliangos, Evolution of Near – Equiaxed Microstructure in the Semisolid State, Materials Science and Engineering A, Vol. 289 (2000) 228 - 240.

DOI: https://doi.org/10.1016/s0921-5093(00)00908-4

[12] M. Reisi, B. Niroumand, On the Dilemma of Shear and Flow Requirements for Evolution of Semisolid Microstructures, Materials Letters, Vol. 68(2012) 317 - 319.

DOI: https://doi.org/10.1016/j.matlet.2011.10.057

[13] M. Raisi, B. Niroumand, Evolution of Primary Particles Morphology During Secondary Cooling in SSR Process, Solid State Phenomena, Vol. 116 – 117(2006) 493 – 496.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.116-117.493

[14] B. Niroumand, B . Xia, Relationship Between Microstructural Features in a Semisolid Processed Al-Cu Alloy, International Conference on Semisolid Processing of Alloys and Composites, Colorado School of Mines, (1998) 637 - 644.

[15] J. Jiang, Y. Wang, Z.M. Du, S.J. Luo, Microstructure and Properties of AZ80 Alloy Semisolid Billets Fabricated by New Strain Induced Melt Activated Method, Transaction Nonferrous Metals Society of China, Vol. 22(2012) 422 – 427.

DOI: https://doi.org/10.1016/s1003-6326(12)61741-5

[16] R. W. Cahn, Thermo-Mechanical Processing of Metallic Materials, Elsevier Science, (2007).

[17] H. Abrams, rain Size Measurement by the Intercept Method, Metallography, Vol. 4(1971) 59 – 78.

[18] K.N. Campo, D. Dalton, N. Lopes, on the selection of Ti-Cu alloy for thixoforming processes: phase diagram and microstructural evaluation, Material Science Journal, vol. 50(2015) 8007 – 8017.

DOI: https://doi.org/10.1007/s10853-015-9367-4

[19] J.G. Wang, P. Lu, H.Y. Wang, J.F. Liu, Q.C. Jiang, Semisolid microstructure evolution of the preformed AZ91D alloy during heat treatment, J Alloys Compd., (2005).

[20] A. Bolouri, M. Shahmiri, E. N. H. Cheshmeh, Microstructure Evolution During Semisolid State Strain Induced Melt Activation Process of Aluminum 7075 Alloy, Transaction Nonferrous Metals Society of China, Vol. 20 (2010) 1663 - 1671.

DOI: https://doi.org/10.1016/s1003-6326(09)60355-1

[21] M. Alipour, M. Emamy, Effect of Al-5Ti-1B on Structure and Hardness of a Super HighStrength Aluminum Alloy Produced by Strain – Induced Melt Activation Process, Material and Design, Vol. 32(2011) 4485 – 4492.

DOI: https://doi.org/10.1016/j.matdes.2011.03.044

[22] M, Emamy A. Razaghian, M. Karshenas, The Effect of Strain Induced Melt Activation Process on Microstructure and Mechanical Properties of Ti – Refined A6070 Al Alloy, Material and Design, Vol. 46(2013) 824-831.

DOI: https://doi.org/10.1016/j.matdes.2012.10.060

[23] J. Wang, L. Dehong, X. Han, Z. Rongfeng, Z. Rong, W. Lingbiao, Effect of Rolling- Remelting SIMA on Semisolid Microstructure of ZCuSn10 alloy, Solid State Phenomena, Vol. 217-218 (2015) 418-425.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.217-218.418