Thixoforming of Semisolid Slurry with High Fraction Solid Fabricated by Partial Melting of Commerical Wrought Aluminum Alloys


Article Preview

Semisolid slurries of four wrought alloys were fabricated via partial melting of commerical wrought aluminum alloy. Thixoforming experiments of four typical parts were performed. The results showed that a large amount of equiaxed grains before soaking in semisolid state were created due to recrystallization occurred in the continuous heating from room temperature to a given temperature above recrystallization temperature. It provides a desirable microstructure to form spheroidal grains during the next soaking process in semisolid state. The microstructure of the 2A12,7A04 and 7075 semisolid slurry consisted of fine and spheroidal grains. The elongation of the thixoformed parts were higher those of the hot-rolled plate. The UTS of the thixoformed parts were close or ever higher than those of the hot-rolled plate. Although the grain size and roundness of the 5A06 semisolid slurry are not very desirable, the mechanical properties of the thixoformed part are close or ever than those of the hot-rolled plate. The high mechanical properties of the thixoformed parts further confirmed the feasibility of short-process thixoforming route



Solid State Phenomena (Volume 285)

Edited by:

Qiang Zhu, Ahmed Rassili, Stephen P. Midson and Xiao Gang Hu




J. F. Jiang et al., "Thixoforming of Semisolid Slurry with High Fraction Solid Fabricated by Partial Melting of Commerical Wrought Aluminum Alloys", Solid State Phenomena, Vol. 285, pp. 210-218, 2019

Online since:

January 2019




* - Corresponding Author

[1] D. B. Spencer, Rheology of liquid-solid mixtures of lead-tin [Ph.D. Thesis], Cambridge, MA, USA: Massachusetts Institute of Technology; (1971).

[2] D. B. Spencer, R. Mehrabian, M. C. Flemings, Rheological behavior of Sn-15 pct Pb in the crystallization range, Metall. Trans. B 3(1972)1925-1932.


[3] P.A. Joly, R. Mehrabian, A rheology of partially solid alloy, J. Mater. Sci. 11(1976)1393-1418.

[4] M. C. Flemings, Behavior of metal alloys in the semisolid state, Metall. Trans. B 22(1991)269-293.

[5] Y. Meng, S. Sugiyama, J. Yanagimoto,Microstructural evolution during RAP process and deformation behavior of semi-solid SKD61 tool steel, J. Mater. Process. Technol. 212(2012)1731-1741.


[6] Y. Meng, S. Sugiyama, M.Soltanpour, J. Yanagimoto, Effects of predeformation and semi-solid processing on microstructure and mechanical properties of Cr-V-Mo steel, J. Mater. Process. Technol.213 (2013) 426-433.


[7] Y.N. Chen, J.F. Wei , Y.Q. Zhao, X.M. Zhang, Tensile properties and microstructure of Ti14 alloy after semi-solid forging, Trans. Nonferrous Met. Soc. China,21(2011)2610-2616.


[8] Y. N. Chen, C. Luo, F. Y. Zhang , J.F. Wei , Y.Q. Zhao, Effect of Temperature on Segregation and Deformation Mechanism of α+Ti2Cu Alloy during Semi-Solid Forging, Rare Met. Mater. Eng. 44 (2015) 1369-1373.


[9] Y. F. Guo, M.Y. Sun, B. Xua, D. Z. Li, A method based on semi-solid forming for eliminating Laves eutectic phase of INCONEL 718 alloy,J. Mater. Process. Technol.249 (2017)202-211.


[10] Ł. Rogal, On the microstructure and mechanical properties of the AlCoCrCuNi high entropy alloy processed in the semi-solid state, Mater. Sci. Eng. A709(2018)139-151.

[11] Ł. Rogal,Semi-solid processing of the CoCrCuFeNi high entropy alloy, Mater. Des. 119(2017)406-416.

[12] L .J. Zhang, J. T. Fan, D. J. Liu, M. D. Zhang, P. F. Yu, Q. Jing, M. Z. Ma, P. K. Liaw, G. Li, R. P. Liu, The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state, J. Alloys Compd. 745 (2018)75-83.

[13] K. P. Young, C. P. Kyonka, J. A. Courtois, Fine Grained metal composition, US Patent 4415374. 1982 March30.

[14] D. H. Kirkwood, C. M. Sellars, L. G. Elias Boyed, Thixotropic materials, European Patent 0305375 B1. 1992 October28.

[15] A. Bolouri, M. Shahmiri, C. G. Kang, Coarsening of equiaxed microstructure in the semisolid state of aluminum 7075 alloy through SIMA processing, J. Mater. Sci. 47(2012)3544-3553.


[16] N. Saklakoglu, I. E. Saklakoglu, M. Tanoglu, O. Oztas, O. Cubukcuoglu, Mechanical properties and microstructural evaluation of AA5013 aluminum alloy treated in the semi-solid state by SIMA process, J. Mater. Process. Technol. 148(2004)103-107.


[17] G. H. Yan, S. D. Zhao, S. Q. Ma, H. T. Shou, Microstructural evolution of A356.2 alloy prepared by the SIMA process, Mater. Charact. 69(2012)45-51.

[18] Bolouri, M. Shahmiri, E. N. H.Cheshemeh, Microstructural evolution during semisolid state strain induced melt activation process of aluminum 7075 alloy, Trans. Nonferrous Met. Soc. China 20(2010)1663-1671.


[19] E.Parshizfard, S. G. Shabestari, An investigation on the microstructural evolution and mechanical properties of A380 aluminum alloy during SIMA process, J. Alloys Compd. 509(2011)9654-9658.


[20] H. V. Atkinson, D. Liu, Microstructural coarsening of semi-solid aluminium alloys, Mater. Sci. Eng. A 496(2008)439-446.

[21] A. Bolouri, C. G. Kang, Correlation between solid fraction and tensile properties of semisolid RAP processed aluminum alloys, J. Alloys Compd. 516(2012)192-200.


[22] J. F. Jiang, Y. Wang, H. V. Atkinson,Microstructural coarsening of 7005 aluminum alloy semisolid billets with high solid fraction, Mater. Charact. 90(2014)52-61.


[23] D. Liu, H. V. Atkinson, P. Kapranos, H. Jones, Effect of heat treatment on properties of thixoformed high performance 2014 and 201 aluminium alloys, J. Mater. Sci. 39(2004)99-105.


[24] J. F. Jiang, Y. Wang, G. F. Xiao, X. Nie, Comparison of microstructural evolution of 7075 aluminum alloy fabricated by SIMA and RAP, J. Mater. Process. Technol. 238(2016)361-372.


[25] J. F. Jiang, H. V. Atkinson, Y. Wang,Microstructure and mechanical properties of 7005 aluminum alloy components formed by thixoforming, J.Mater. Sci. Technol. 33(2017)379-388.

[26] PRC National Standard GB/T 16474-2011, Desgination system for aluminum and aluminum alloy, Standarization Administration of the People's Republic China. Beijing, (2011).

[27] ASTM Standard E8M, Standard Test Methods for Tension Testing of Metallic Materials [Metric], ASTM International, West Conshohocken, PA, (2008).

[28] H. V. Atkinson, K. Burke, G. Vaneetveld, Recrystallisation in the semi-solid state in 7075 aluminium alloy, Mater. Sci. Eng. A 490(2008)266-276.


[29] P. K. Seo, C. G. Kang, The effect of raw material fabrication process on microstructural characteristics in reheating process for semi-solid forming, J. Mater. Process. Technol. 162-163(2005)402-409.


[30] M. Kiuchi, R. Kopp, Mushy/Semi-Solid Metal Forming Technology-Present and Future, CIRP Ann. Manuf. Techn. 51(2002)653-670.


[31] Y. M. Hu, L. Hua, Forging process and die design, first ed., Peking University Press, Beijing, 2006 (in Chinese).

[32] PRC National Standard GB/T3880.2-2012,Wrought aluminum and aluminum alloy plates, sheet and strips for general engineering-Part2: Mechanical properties, Standarization Administration of the People's Republic China. Beijing, (2012).

[33] C. P. Chen, C-Y. A. Tsao, Semi-solid deformation of non-dendrtic structure-I. Phemonological behavior, Acta Mater., 45(1997)1955-1968.

[34] K. Kubotak, M. Mabuchi, K. Higashi, Review processing and mechanical properties of fine-grained Mg alloys, J. Mater. Sci., 341(999)2255-2262.