Damaging of Ultrasonic Horn for Semisolid Feedstock Production

Abstract:

Article Preview

Ultrasound treatment is one of the known method to obtain the globular microstructure for semisolid processing of aluminum alloys. Notwithstanding the numerous advantages, the main industrial limit of this method is the low service life of the horn due to the combined hot corrosion and erosion phenomena. Various approaches are reported in literature to overcome this problem, but a real satisfactory option does not seem to be available yet. In this paper, the behavior of a H11 tool steel sonotrode coated with a thin layer of TiAlCN is investigated and compared with the performance of an uncoated steel one. The lifetime of the horn was evaluated in terms of effectiveness in semisolid feedstock material preparation. For this purpose, the microstructure of semisolid cast samples obtained after different working times was analyses by optical and scanning electron microscopy. Moreover, melt contaminations due to the probe dissolution were also evaluated. The applied coating exhibited a significant resistance to separate hot corrosion in liquid Al alloy and cavitation erosion phenomena in water. However, the combined effect of the two damaging mechanisms during ultrasound treatment of the molten alloy leaded to coating removal and to a horn consumption comparable to that of bare steel.

Info:

Periodical:

Solid State Phenomena (Volume 285)

Edited by:

Qiang Zhu, Ahmed Rassili, Stephen P. Midson and Xiao Gang Hu

Pages:

240-246

Citation:

L. Montesano et al., "Damaging of Ultrasonic Horn for Semisolid Feedstock Production", Solid State Phenomena, Vol. 285, pp. 240-246, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] S. Nafisi, R. Ghomashchi, Semi-Solid Processing of Aluminum Alloys, Springer, (2016).

[2] A. Pola, L. Montesano, M. Gelfi, R. Roberti, Semisolid processing of Al-Sn-Cu alloys for bearing applications, Sol. St. Phen. 192-193 (2013) 562-568.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.192-193.562

[3] V. O. Abramov, O. V. Abramov, B. B. Straumal, W. Gust, Hypereutectic Al-Si based alloys with a thixotropic microstructure produced by ultrasonic treatment, Mater. Des. 18(4-6) (1997) 323-326.

DOI: https://doi.org/10.1016/s0261-3069(97)00072-1

[4] C. Lin, S. Wu, S. Lü, P. An, L. Wan, Microstructure and mechanical properties of rheo-diecast hypereutectic Al–Si alloy with 2%Fe assisted with ultrasonic vibration process, J. Alloys Compd. 568 (2013) 42-48.

DOI: https://doi.org/10.1016/j.jallcom.2013.03.089

[5] J.-W. Zhao, S.-S. Wu, Microstructure and mechanical properties of rheo-diecasted A390 alloy, T. Nonferr. Metal. Soc. 20(3) (2010) s754-s757.

DOI: https://doi.org/10.1016/s1003-6326(10)60576-6

[6] G. Eskin, D. Eskin, Ultrasonic Treatment of Light Alloy Melts, CRC Press, Boca Raton, (2014).

[7] J. Zhao, S. Wu, L. Wan, Q. Chen, P. An, Evolution of microstructure of semisolid metal slurry in ultrasound field, Acta Metall. Sin. 45(3) (2009) 314-319.

[8] G. Eskin, Principles of ultrasonic treatment: Application for light alloys melts, Adv. Perform. Mater. 4(2) (1997) 223-232.

[9] I. Brodova, P. Popel, Eskin, I. G. Eskin, Liquid metal processing: Applications to aluminum alloys production, CRC Press, Taylor & Francis, (2001).

[10] A. Arrighini, M. Gelfi, A. Pola, R. Roberti, Effect of ultrasound treatment of AlSi5 liquid alloy on corrosion resistance, Mater. Corros. 61(3) (2010) 218-221.

DOI: https://doi.org/10.1002/maco.200905303

[11] W. Khalifa, S. El-Hadad, Y. Tsunekawa, Microstructure characteristics and tensile property of ultrasonic treated-thixocast A356 alloy, T. Nonferr. Metal. Soc. 25(10) (2015) 3173-3180.

DOI: https://doi.org/10.1016/s1003-6326(15)63949-8

[12] A. Dahle, K. Nogita, S. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al-Si Alloys, Mater. Sci. Eng., A, 413-414 (2005) 243-248.

DOI: https://doi.org/10.1016/j.msea.2005.09.055

[13] S. Shabestari, F. Shahri, Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy, J. Mater. Sci. 39(6) 2023-2032 (2004).

DOI: https://doi.org/10.1023/b:jmsc.0000017764.20609.0d

[14] C. Dinnis, J. Taylor, A. Dahle, As-cast morphology of iron-intermetallics in Al–Si foundry alloys, Scripta Mater. 53 (2005) 955–958.

DOI: https://doi.org/10.1016/j.scriptamat.2005.06.028

[15] L. Ceschini, I. Boromei, A. Morri, S. Seifeddine , I.L Svensson, Effect of Fe content and microstructural features on the tensile and fatigue properties of the Al–Si10–Cu2 alloy, Mater. Des. 36 (2012) 522-528.

DOI: https://doi.org/10.1016/j.matdes.2011.11.047

[16] L. Ceschini, I. Boromei, A. Morri, S. Seifeddine, I.L Svensson, Microstructure, tensile and fatigue properties of the Al-10%Si-2%Cu alloy with different Fe and Mn content cast under controlled conditions, J. Mater. Process. Tech. 209(15-16) (2009).

DOI: https://doi.org/10.1016/j.jmatprotec.2009.05.030

[17] Y. Tsunekawa, M. Okumiya, T. Motomura, Semisolid casting with ultrasonically melt-treated billets of Al-7mass%Si alloys, China Foundry 9(1) (2012) 78-83.

[18] D. Eskin, Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook, Materi. Sci. Tech. 33(6) (2017) 636-645.

[19] X.-M. C. W.-P. Zhang, Review on corrosion-wear resistance performance of materials in molten aluminum and its alloys, T. Nonferr. Metal. Soc. 25(6) (2015) 1715-1731.

[20] S. Komarov, D. Kuznetsov, Erosion resistance and performance characteristics of niobium ultrasonic sonotrodes, International Journal of Refractory Metals and Hard Materials 35 (2012) 76-83.

DOI: https://doi.org/10.1016/j.ijrmhm.2012.04.004

[21] A. Robin, H. Sandim, Degradation behavior of niobium in molten aluminum, IJRMHM 20(3) (2002) 221-225.

[22] S. Komarov, Y. Ishiwata, Development of Large-size Ultrasonic Sonotrodes for Cavitation Treatment of Molten Metals, in ICAA12, Pittsburgh, (2013).

DOI: https://doi.org/10.1007/978-3-319-48761-8_14

[23] ASTM G32. Standard test method for cavitation erosion using vibratory apparatus, (2010).

[24] G. Gottardi, A. Pola, G. La Vecchia, Solid fraction determination via DSC analysis, Metall. Ital. 107(5) (2015) 11-16.

[25] A. Fortini, L. Lattanzi, M. Merlin, G.L. Garagnani. Comprehensive evaluation of modification level assessment in Sr-modified aluminium alloy. Int. J. Metalcast (2018).

DOI: https://doi.org/10.1007/s40962-017-0202-3

[26] L. Ceschini, A. Morri, S. Toschi, A. Bjurenstedt, S. Seifeddine, Influence of Sludge Particles on the Fatigue Behavior of Al-Si-Cu Secondary Aluminium Casting Alloys, Metals 8(4) (2018).

DOI: https://doi.org/10.3390/met8040268

[27] S. Shabestari, The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys, Mater. Sci. Eng. A 383 (2004) 289-298.

DOI: https://doi.org/10.1016/j.msea.2004.06.022