Microstructure and Properties of Semi-Solid CuSn10P1 Alloy under Different Filling Velocity by Squeeze Casting


Article Preview

Semi-solid CuSn10P1 alloy slurry was fabricated by a novel enclosed cooling slope channel (for short ECSC). The effect of filling velocity on microstructure and properties by squeeze casting was studied. The results showed that primary α-Cu phase gradually formed from dendrites evolved into worm-like or equiaxed crystals by ECSC. As the filling velocity increases, the ultimate tensile strengths and elongations of the shaft sleeve increase first and then decrease. The ultimate tensile strength and elongation of semi-solid squeeze casting CuSn10P1 alloy reached a maximum of 417.6MPa and 12.6% when the forming pressure is 100MPa and filling velocity is 21mm/s, which were improved by 22% and 93%, respectively, as compared to that of liquid squeeze casting.



Solid State Phenomena (Volume 285)

Edited by:

Qiang Zhu, Ahmed Rassili, Stephen P. Midson and Xiao Gang Hu




Y. K. Li et al., "Microstructure and Properties of Semi-Solid CuSn10P1 Alloy under Different Filling Velocity by Squeeze Casting", Solid State Phenomena, Vol. 285, pp. 264-270, 2019

Online since:

January 2019




* - Corresponding Author

[1] Liao X.N., Cao F.H., Chen A.N., Liu W.J., Zhang J.Q., Cao C.N. In-situ investigation of atmospheric corrosion behavior of bronze under thin electrolyte layers using electrochemical technique[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(5): 1239-1249.

DOI: https://doi.org/10.1016/s1003-6326(11)61311-3

[2] Kato H, Takama M, Iwai Y, Washida K, Sasaki Y. Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide[J]. Wear, 2003, 255(1-6): 573-578.

DOI: https://doi.org/10.1016/s0043-1648(03)00072-3

[3] Deng X, Chawla N, Chawla K.K., Koopman M. Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation[J]. Acta Materialia, 2004, 52(14): 4291-4303.

DOI: https://doi.org/10.1016/j.actamat.2004.05.046

[4] Šatović D, Žulj L, Desnica V, Fazinić S, Martinez S. Corrosion evaluation and surface characterization of the corrosion product layer formed on Cu–6Sn bronze in aqueous Na2SO4 solution[J]. Corrosion Science, 2009, 51(8): 1596-1603.

DOI: https://doi.org/10.1016/j.corsci.2009.04.002

[5] Kohler F, Campanella T, Nakanishi S, Rappaz M. Application of single pan thermal analysis to Cu–Sn peritectic alloys[J]. Acta Materialia, 2008, 56(7): 1519-1528.

DOI: https://doi.org/10.1016/j.actamat.2008.04.038

[6] Ünlü B.S., Atik E. Evaluation of effect of alloy elements in copper based CuSn10 and CuZn30 bearings on tribological and mechanical properties[J]. Journal of Alloys and Compounds, 2010, 489(1): 262-268.

DOI: https://doi.org/10.1016/j.jallcom.2009.09.068

[7] Robbiola L, Tran T.T.M, Dubot P, Majerus O, Rahmouni K. Characterisation of anodic layers on Cu–10Sn bronze (RDE) in aerated NaCl solution[J]. Corrosion Science, 2008, 50(8): 2205-2215.

DOI: https://doi.org/10.1016/j.corsci.2008.06.003

[8] Taşliçukur Z, Altuğ G.S., Polat S, Hakan A.Ş., Türedi E. A Microstructural Study on CuSn10 Bronze Produced By Sand And Investment Casting Techniques[C]//Proceedings of XXI. International Conference on Metallurgy and Materials. (2012).

[9] Halvaee A, Talebi A. Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy[J]. Journal of Materials Processing Technology, 2001, 118(1-3): 122-126.

DOI: https://doi.org/10.1016/s0924-0136(01)00904-9

[10] Poggio E, Piccardo P. Tint metallography of as-cast tin-bronzes for hot tearing investigation[J]. Microscopy and Analysis, 2004: 5-8.

[11] Li H, Wang L.M., Wan X.L., Li Z.R., Bai J. Study on Preparation of Partially Alloyed CuSn10 Powders by Diffusion Treatment[J]. Powder Metallurgy Industry, 2003, 13(6): 13-17.

[12] Liu X.F., Luo J.H., Wang X.C. Surface quality, microstructure and mechanical properties of Cu–Sn alloy plate prepared by two-phase zone continuous casting[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1901-1910.

DOI: https://doi.org/10.1016/s1003-6326(15)63797-9

[13] Du Z.Z., Fu H.G., Fu H.F., Xiao Q. A study of ceramic-lined compound copper pipe produced by SHS–centrifugal casting[J]. Materials Letters, 2005, 59(14-15): 1853-1858.

DOI: https://doi.org/10.1016/j.matlet.2005.02.060

[14] Lee S.Y., Lee S.Y. A study on the microstructural defects in slots of thixoformed copper rotor[J]. Solid State Phenomena. 2006, 116: 300-303.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.116-117.300

[15] Kose T, Uetani Y, Nakajima K, Matsuda K, lkeno S. Effect of die temperature on tensile property of rheocast phosphor bronze[J]. Advanced Materials. 2012, 409: 237-242.

DOI: https://doi.org/10.4028/www.scientific.net/amr.409.237

[16] Atkinson H.V., Rassili A. A review of the semi-solid processing of steel[J]. International Journal of Material Forming, 2010, 3(1): 791-795.

[17] Jorstad J.L. Semi-Solid Metal Processing from an Industrial Perspective; The Best is yet to Come! Solid State Phenomena. 2016, 256: 9-14.

DOI: https://doi.org/10.4028/www.scientific.net/ssp.256.9

[18] Hassas-Irani S.B., Zarei-Hanzaki A, Bazaz B, Roostaei Ali A. Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method. Mater. Des, 2013, 46(4): 579-587.

DOI: https://doi.org/10.1016/j.matdes.2012.10.041

[19] Yurko J.A., Martinez R.A., Flemings M.C. Commercial development of the semi-solid rheocasting (SSRTM) process. Metall. Sci. Tec. 2013, 21(1):10-15.

[20] Guan R.G., Wang C, Shang J.H., Xing Z.H. Semi-solid metal forming by novel sloping plate process[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(A03): 1265-1269.

[21] Mao W.M., Zheng Q, Zhu D.P. Rheo-squeeze casting of semi-solid A356 aluminum alloy slurry[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1769-1773.

DOI: https://doi.org/10.1016/s1003-6326(09)60372-1

[22] Dao V, Zhao S.D., Lin W.J., Zhang C.Y. Effect of process parameters on microstructure and mechanical properties in AlSi9Mg connecting-rod fabricated by semi-solid squeeze casting[J]. Materials Science and Engineering: A, 2012, 558: 95-102.

DOI: https://doi.org/10.1016/j.msea.2012.07.084