Structural Characteristics of Metal-Ceramic Interpenetrating Phase Composites Manufactured by Using Semi-Solid Forming Technology


Article Preview

Interpenetrating Phase Composites (IPC) belong to a special subcategory of composite materials and reveal enhanced properties compared to the more common particle or fibre reinforced composite materials. However, as the use of conventional manufacturing processes creates structural deficits, these IPC are not able to exploit their complete potential. In this respect, infiltration of open-pore bodies from alumina with an aluminium alloy in the semi-solid state offers great perspectives for manufacturing of IPC. In this context, this paper is focusing on significant structural characteristics of metal-ceramic IPC produced in this way by using a tool with an open die cavity. Thereby, the macroscopic mould filling, possible damage of the ceramic body, the residual porosity, the filling of microporosity of the cell walls and possible interface reactions depending on the thermal parameters of the manufacturing process were investigated in this paper.



Solid State Phenomena (Volume 285)

Edited by:

Qiang Zhu, Ahmed Rassili, Stephen P. Midson and Xiao Gang Hu




L. Schomer and M. Liewald, "Structural Characteristics of Metal-Ceramic Interpenetrating Phase Composites Manufactured by Using Semi-Solid Forming Technology", Solid State Phenomena, Vol. 285, pp. 51-56, 2019

Online since:

January 2019




* - Corresponding Author

[1] D. Nestler, Beitrag zum Thema Verbundwerkstoffe - Werkstoffverbunde: Status quo und Forschungsansätze,, Technische Universität Chemnitz, (2012).

[2] F. Scherm et al., Microstructural characterization of interpenetrating light weight metal matrix composites,, Mater. Sci. Eng. A, vol. 518, p.118–123, (2009).

[3] R. J. Moon, M. Tilbrook, M. Hoffman, A. Neubrand, Al-Al 2O 3 composites with interpenetrating network structures: Composite modulus estimation,, J. Am. Ceram. Soc., vol. 88, no. 3, p.666–674, (2005).


[4] C. San Marchi, M. Kouzeli, R. Rao, J. A. Lewis, D. C. Dunand, Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture,, Scr. Mater., vol. 49, no. 9, p.861–866, (2003).


[5] D. Cree, M. Pugh, Production and characterization of a three-dimensional cellular metal-filled ceramic composite,, J. Mater. Process. Technol., (2010).

[6] J. Binner, H. Chang, R. Higginson, Processing of ceramic-metal interpenetrating composites,, J. Eur. Ceram. Soc., (2009).

[7] G. Standke, T. Müller, A. Neubrand, J. Weise, R. Westerheide, Metall-Matrix-Verbundwerkstoffe auf Basis von Hochleistungs- Schaumkeramiken,, (2005).

[8] C. Seyboldt, M. Liewald, D. Heydt, Production of Aluminium Based Interpenetrating Phase Composites Using Semi-Solid Forming..


[9] G. Hirt, R. Kopp, Thixoforming: Semi-Solid Metal Processing. Weinheim: Wiley-VCH, (2009).

[10] F. Ostermann, Anwendungstechnologie Aluminium. Springer Verlag, (2007).

[11] C. Garcia-Cordovilla, E. Louis, A. Pamies, The surface tension of liquid pure aluminium and aluminium-magnesium alloy,, J. Mater. Sci., vol. 21, p.2787–2792, (1986).


[12] G. Meßmer, Gestaltung von Werkzeugen für das Thixo-Schmieden von Aluminium und Messinglegierungen in automatisierten Schmiedezellen,, Universität Stuttgart, (2006).

[13] L. Schomer, C. Seyboldt, M. Liewald, Semi-Solid Metal Forming -A Process for Manu- facturing Composite and Hybrid Materials,, Defect Diffus. Forum, vol. 381, p.47–51, (2017).