Evaluation of Nanostructured Coatings for the Protection of Apuan Marble Stone


Article Preview

Nowadays the use of multifunctional nanomaterials has significantly increased with interesting applications for the cultural heritage conservation sector, leading to the definition and use of products with innovative properties. Therefore, a preliminary validation of the performances and behavior over time of these treatments becomes an unavoidable key point for a correct use of these products before being applied to historical materials, in order to avoid irreparable damage over time. In this direction, the aim of this study was to evaluate the effectiveness of the treatment with multifunctional nanostructured products on Apuan marble. The focus of the work was to test methods to accelerate aging, in order to simulate different environmental agents of degradation to which marble in historical buildings can be exposed. Stone samples were examined after exposition to high temperature cycles in a muffle furnace, treatments in saline solution, cycles of thermal shock and aging by SO2 action in presence of humidity. After each artificial aging cycle, changes in appearance were noted and chemical-physical properties were measured in order to compare differences between fresh and treated samples. The protective qualities of the coatings were evaluated using the following tests: contact angle; photocatalytic properties by methylene blue degradation tests; photodegradation kinetics of pollutants under UVA irradiation. Before and after the treatments, scanning electron microscopy equipped by microanalysis detector (SEM-EDS) was also used to evaluate changes in the surface morphology of the samples. The results showed effects of degradation in the rock samples due to aging after each test and all the products applied to the sample surface seemed to be very efficient in relation to their functions.



Solid State Phenomena (Volume 286)

Edited by:

Luz Stella Gomez-Villalba




S. Germinario et al., "Evaluation of Nanostructured Coatings for the Protection of Apuan Marble Stone", Solid State Phenomena, Vol. 286, pp. 105-116, 2019

Online since:

January 2019




* - Corresponding Author

[1] R. Giorgi, L. Dei, P. Baglioni, A new method for consolidating wall paintings based on dispersions of lime in alcohol. Stud. Conserv., 45, (2000) pp.154-161.

DOI: https://doi.org/10.1179/sic.2000.45.3.154

[2] L. Dei, B. Salvadori, Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J. Cult. Herit., 7, (2006) pp.110-115.

DOI: https://doi.org/10.1016/j.culher.2006.02.001

[3] E. Hansen, E. Doehne, J. Fidler, J. Larson, B. Martin, M. Matteini, C. Rodríguez-Navarro, E. Sebastian C. Pardo, Price, A. de Tagle, J. M. Teutonico, N. R. Weiss, A review of selected inorganic consolidants and protective treatments for porous calcareous materials. Reviews in Conservation, http://dx.doi.org/10.1179/ sic. 2003, 48, Supplement 1.13, 4 (2003).

DOI: https://doi.org/10.1179/sic.2003.48.supplement-1.13

[4] A. Sierra-Fernandez, L. S. Gomez-Villalba, M. E. Rabanal & R. Fort, New nanomaterials for applications in conservation and restoration of stony materials: A review. Materiales de Construcción, 67, 325, (2017) e 107, pp.1-18.

DOI: https://doi.org/10.3989/mc.2017.07616

[5] N. Ditaranto, S. Loperfido, I. van der Werf, A. Mangone, N. Cioffi, L. Sabbatini, Synthesis and analytical characterisation of copper-based nanocoatings for bioactive stone artworks treatment, 399 (2010) pp.473-481.

DOI: https://doi.org/10.1007/s00216-010-4301-8

[6] N. Ditaranto, I. D. van der Werf, R. A. Picca, M. C. Sportelli, L.C. Giannossa, E. Bonerba, G. Tantillo, L. Sabbatini, Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stoneworks, New Journal of Chemistry, 39 (2015).

DOI: https://doi.org/10.1039/c5nj00527b

[7] F. Fernandez, V. Piazza, In Situ Evaluation of Nanostructured Treatments for Stone Consolidation in the Temple Valley of Agrigento, Journal of Materials Science and Engineering,3 (2013) pp.646-652.

[8] I. De Rosario, F. El Haddad, A. Pan, R. Benavides, T. Rivas, M. J. Mosquera, Effectivness of a novel consolidant on granite: laboratory and in situ results, Construction and building materials, (2015) pp.140-149.

DOI: https://doi.org/10.1016/j.conbuildmat.2014.11.055

[9] G. Alaimo, M. F. Alberghina, B. Codan, D. Enea, F. Fernandez, D. Fontana, P. Livreri , L. Todaro, L. Tranchina, Prodotti nanostrutturati per la protezione di superfici lapidee: valutazione dell'efficacia mediante tecniche fisiche non invasive, Workshop Diagnostics for Cultural Heritage: Analyticalapproach for an effectiveconservation,10 Giugno 2013, (2013).

[10] P. Baglioni, E. Carretti, D. Chelazzi, Nanomaterials in art conservation, Nature Nanotechnology, 10 (2015) pp.287-290.

DOI: https://doi.org/10.1038/nnano.2015.38

[11] L. Trevisan, L. Dallan, P. R. Federici, G. Giglia, R. Nardi, G. Raggi, Note Illustrative della Carta Geologica D'Italia alla scala 1:100.000, Foglio 96 Massa,, (1971).

[12] P. Blasi, A. Criscuolo, S. Lisi: Il Marmo di Carrara: aspetti geologici, merceologici e minerari, Eurominerals and the society of miningprofessors 1998, September 12-16, Carrara, Italy, (1998).

[13] G. Bruschi, A. Criscuolo, G. Zanchetta, Stratigrafica delle discariche di detrito dei bacini marmiferi di Carrara. I ravaneti antichi di Carbonera, Strinato, Gioia e Scalocchiella. Acta apuana, 2 (2003) pp.26-32.

[14] E. Cantisanti, F. Fratini, G. Molli, L. Pandolfi, Sulla provenienza apuana del marmo di cippi funerari etruschi, Acta apuana, 2 (2003) pp.19-25.

[15] E. Dolci, Carrara cave antiche, Materiali Archeologici, Viareggio, (1980).

[16] E. Dolci, I marmi lunensi: tradizione, produzione, applicazioni. Quaderni del Centro Studi Lunensi, 11(1985) pp.405-463.

[17] E. Dolci, Archeologia Apuana, Lions Club, Aulla, (2003).

[18] L. Lazzarini, M. Laurenzi Tabasso, Il restauro della pietra, CEDAM, (1986).

[19] K. Zehnder, A. Arnold, Crystal growth in salt efflorescence, J Cryst Growth, 97 (1989) pp.513-521.

DOI: https://doi.org/10.1016/0022-0248(89)90234-0

[20] V. Zedef, K. Kocak, A. Doyen, H. Ozsen, B. Kekec, Effect of salt crystallization on stones of historical buildings and monuments, Konya, Central Turkey, Building and Environment, 42 (2007) pp.1453-1457.

DOI: https://doi.org/10.1016/j.buildenv.2005.12.010

[21] G. W. Scherer, Stress from crystallization of salt, Cement and Concrete Research, 34 (2004) pp.1613-1624.

DOI: https://doi.org/10.1016/j.cemconres.2003.12.034

[22] E. Ruiz-Agudo, F. Mees, P. Jacobs, C. Rodriguez-Navarro, The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates, Environmental Geology, 52 (2007) pp.269-281.

DOI: https://doi.org/10.1007/s00254-006-0476-x

[23] D. Benavente, J. Martinez-Martinez, N. Cueto, M. A. Garcia-del-Cura, Salt weathering in dual-porosity building dolostones. EngGeol, 56 (2007) pp.729-740.

DOI: https://doi.org/10.1016/j.enggeo.2007.08.003

[24] D. Benavente, Why Pore Size Is Important in the Deterioration of Porous Stones Used in the Built Heritage, revista de la sociedadespañola de mineralogía, 15 (2011) pp.41-42.

[25] G. F. Andriani, N. Walsh, The effects of wetting and drying, and marine salt crystallization on calcarenite rocks used as building material in historic monuments, Geol. Soc., 44 (2007) pp.129-141.

DOI: https://doi.org/10.1144/gsl.sp.2007.271.01.18

[26] R. A. Lefèvre (Eds), La pietra dei monumenti in ambiente fisico e culturale, Atti del 2° Corso Intensivo Europeo tenuto a Ravello e a Firenze dal 10 al 24 aprile 1994, EDIPUGLIA, (1997).

[27] G. Barbera, G. Barone, P. Mazzoleni, A. Scandurra, Laboratory measurement of ultrasound velocity during accelerated aging tests: Implication for the determination of limestone durability, Construction and Building Materials, 36 (2012) pp.977-983.

DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.029

[28] H. Yavuz, S. Demirdag, S. Caran, Thermal effect on the physical properties of carbonate rocks, International Journal of Rock Mechanics and Mining Sciences, 47 (2010) pp.94-103.

DOI: https://doi.org/10.1016/j.ijrmms.2009.09.014

[29] E. Cantisani, E. Pecchioni, F. Fratini, C. A. Garzonio, P. Malesani, G. Molli, Thermal stress in the Apuan marbles: Relationship between microstructure and petrophysical characteristics, International Journal of Rock Mechanics & Mining Sciences, 46 (2009).

DOI: https://doi.org/10.1016/j.ijrmms.2008.06.005

[30] M. P. Sáez-Pérez, J. Rodríguez-Gordillo, Structural and compositional anisotropy in Macael marble (Spain) by ultrasonic, x-rd XRD and optical microscopy methods, Construction and Building Materials, 23 (2009) pp.21-26.

DOI: https://doi.org/10.1016/j.conbuildmat.2008.10.013

[31] J. Rodrıguez-Gordillo, M. P. Saez-Perez, Effects of thermal changes on Macael marble: Experimental study Construction and Building Materials, 20(2006) pp.355-365.

DOI: https://doi.org/10.1016/j.conbuildmat.2005.01.061

[32] G. F. Andriani, L. Germinario, Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes, Environmental Earth Sciences, 72 (2014) pp.1-17.

DOI: https://doi.org/10.1007/s12665-014-3160-6

[33] S. Siegesmund, K. Ullemeyer, T. Weiss, E. K. Tschegg, Physical Weathering of marbles caused by anisotropic thermal expansion, Int J Earth Sci, 89 (2000) pp.170-182.

DOI: https://doi.org/10.1007/s005310050324

[34] J. Rodríguez-Gordillo, M. P. Sáez-Pérez, Effects of thermal changes on Macael marble: Experimental study, Construction and Building Materials, 20 (2006) pp.355-365.

DOI: https://doi.org/10.1016/j.conbuildmat.2005.01.061

[35] G. Fioretti, P. Mazzoleni, P. Acquafredda, G. F. Andriani, On the technical properties of the Carovigno stone from Apulia (Italy): physical characterization and decay effects by means of experimental ageing tests, Environmental Earth Sciences, 17 (2018).

DOI: https://doi.org/10.1007/s12665-017-7201-9

[36] F. Fernandez, S. Germinario, Alteration and deterioration of natural stone materials: artificial aging as a tool of knowledge, VIIIth Conference Diagnosis, Conservation and Valorization of Cultural Heritage, 14/15 December 2017, (2017).

[37] Y. Oczcelik, N. Careddu, E. Yilmazkaya, The effect of freeze–thaw cycles on the gloss values of polished stone surfaces, Cold Reg. Sci. Technol., 82 (2012) pp.49-55.

DOI: https://doi.org/10.1016/j.coldregions.2012.05.007

[38] F. W. Lipfert, Atmospheric damage to calcareous stones: comparison and reconciliation of recent experimental findings, Atmos. Environ., 23 (1989) pp.415-429.

DOI: https://doi.org/10.1016/0004-6981(89)90587-8

[39] M. Urosevic, E. S. Pardo, C. Cardell, Rough and polished travertine building stone decay evaluated by a marine aerosol ageing test, Construct. Build. Mater., 24(2010) pp.1438-1448.

DOI: https://doi.org/10.1016/j.conbuildmat.2010.01.011

[40] F. Guidobaldi, A. M. Mecchi, Corrosion of ancient marble monuments by rain: evaluation of pre-industrial recession rates by laboratory simulations, Atmos. Environ., 271(1993) pp.339-351.

DOI: https://doi.org/10.1016/0957-1272(93)90028-5

[41] P. B. Attewell, D. Taylor Time-dependent atmospheric degradation of building stone in a polluting environment, Environ, Geol Water Sci, 16 (1990) pp.43-55.

DOI: https://doi.org/10.1007/bf01702222

[42] L. K. Gauri, Decay and preservation of stone in modern Environments, Environ Geol Water Sci, 15 (1990) pp.45-54.

DOI: https://doi.org/10.1007/bf01704880

[43] P. Kertész, Decay and conservation of Hungarian building Stones, Environ Geol Water Sci, 16 (1990) pp.3-7.

[44] C. M. Grossi, R. M. Esbert, Weathering, of building carbonate rocks under SO2 polluted atmosphere, Proceedings of 7th International IAEG Congress, Balkema, Rotterdam, (1994).

[45] N. Garcia Pascua, M. I. Sanchez De Rojas, M. Frias, Study of porosity and physical properties as methods to establish the effectiveness of treatments used in two different Spanish stones: limestone and sandstone, International Colloquium on Methods of Evaluating Products for the Conservation of Porous Building Materials in Monuments, Iccrom, (1995).

[46] O. V. Frank-Kamenetskaya, D. Y. Vlasov, M. S. Zelenskaya, I. V. Knauf, M. A. Timasheva, Decaying of the marble and limestone monuments in the urban environment. Case studies from Saint Petersburg, Russia, Studia Universitatis Babeş-Bolyai, Geologia, 54 (2009).

DOI: https://doi.org/10.5038/1937-8602.54.2.4

[47] EN 12370 Metodi di prova per pietre naturali. Determinazione della resistenza alla cristallizzazione dei sali. CNR-ICR, Rome, (2001).

[48] UNI EN 14066 Metodi di prova per le pietre naturali. Determinazione della resistenza all'invecchiamento accelerato tramite shock termico, (2013).

[49] UNI EN 13919 Metodi di prova per pietre naturali. Determinazione della resistenza all'invecchiamento dovuto a SO2 in presenza di umidità, (2004).

[50] ISO 10678:2010 Fine ceramics (advanced ceramics, advanced technical ceramics). Determination of photocatalytic activity of surfaces in an aqueous medium bydegradation of methylene blue, (2010).

DOI: https://doi.org/10.3403/30184698u

[51] Normal 33/89, Misura dell'Angolo di Contatto, (1989).

[52] UNI 11247 Determinazione dell'attività di degradazione di ossidi di azoto in aria da parte di materiali inorganici fotocatalitici, (2007).