New Advances in the Use of Multifunctional Nanomaterials in Conservation-Restoration of Artistic and Archaeological Heritage

Abstract:

Article Preview

In recent years, the development of new procedures and solutions in the field of conservation has been very significant. The purpose of this article is to collect the main contributions of nanotechnology, in its multifunctional solutions applied in heritage, to offer a global vision of the state of the matter for both scientists and restaurateurs.Nanomaterials offer some advantages over traditional products, improved compatibility and efficiency and reducing the use of toxic organic solvents for humans and the environment. Solutions have been developed for both inorganic supports and organic supports for artistic, architectural and archaeological heritage. Especially relevant are the advances in consolidation processes, pH regulation and / or cleaning / elimination of alteration products on murals, frescoes or stone and in materials composed of cellulose and collagen.Also, nanotechnology is still a recent science and has yet to answer certain questions about its use protocols and reduce the possible risks to health.

Info:

Periodical:

Solid State Phenomena (Volume 286)

Edited by:

Luz Stella Gomez-Villalba

Pages:

75-94

Citation:

A. Carvajal-Perez, "New Advances in the Use of Multifunctional Nanomaterials in Conservation-Restoration of Artistic and Archaeological Heritage", Solid State Phenomena, Vol. 286, pp. 75-94, 2019

Online since:

January 2019

Export:

Price:

$41.00

* - Corresponding Author

[1] Tortora, M., Sfarra, S., Chiarini, M., Daniele, V., Taglieri, G., & Cerichelli, G. (2016). Non-destructive and micro-invasive testing techniques for characterizing materials, structures and restoration problems in mural paintings. Applied Surface Science, 387, 971-985.

DOI: https://doi.org/10.1016/j.apsusc.2016.07.023

[2] Baglioni, P., Chelazzi, D., & Giorgi, R. (2014). Nanotechnologies in the Conservation of Cultural Heritage: A compendium of materials and techniques. Springer.

[3] Barberio, M., Veltri, S., Imbrogno, A., Stranges, F., Bonanno, A., & Antici, P. (2015). TiO2 and SiO2 nanoparticles film for cultural heritage: Conservation and consolidation of ceramic artifacts. Surface and Coatings Technology, 271, 174-180.

DOI: https://doi.org/10.1016/j.surfcoat.2014.12.045

[4] Veltri, S., Sokullu, E., Barberio, M., Gauthier, M. A., & Antici, P. (2017). Synthesis and characterization of thin-transparent nanostructured films for surface protection. Superlattices and Microstructures, 101, 209-218.

DOI: https://doi.org/10.1016/j.spmi.2016.11.023

[5] Baglioni, P., Chelazzi, D., Giorgi, R., & Poggi, G. (2013). Colloid and materials science for the conservation of cultural heritage: cleaning, consolidation, and deacidification. Langmuir, 29(17), 5110-5122.

DOI: https://doi.org/10.1021/la304456n

[6] Giorgi, R., Dei, L., Ceccato, M., Schettino, C., & Baglioni, P. (2002). Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification. Langmuir, 18(21), 8198-8203.

DOI: https://doi.org/10.1021/la025964d

[7] Giorgi, R., Chelazzi, D., & Baglioni, P. (2005). Nanoparticles of calcium hydroxide for wood conservation. The deacidification of the Vasa warship. Langmuir, 21(23), 10743-10748.

DOI: https://doi.org/10.1021/la0506731

[8] Giorgi, R., Dei, L., & Baglioni, P. (2000). A new method for consolidating wall paintings based on dispersions of lime in alcohol. Studies in conservation, 45(3), 154-161.

DOI: https://doi.org/10.1179/sic.2000.45.3.154

[9] Giorgi, R., Ambrosi, M., Toccafondi, N., & Baglioni, P.  (2010) Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation. 3rd Chemistry Congress.

DOI: https://doi.org/10.1002/chem.201001443

[10] Giorgi, R., Ambrosi, M., Toccafondi, N., & Baglioni, P. (2010). Nanoparticles for cultural heritage conservation: calcium and barium hydroxide nanoparticles for wall painting consolidation. Chemistry-A European Journal, 16(31), 9374-9382.

DOI: https://doi.org/10.1002/chem.201001443

[11] Rodriguez-Navarro, C., Ruiz-Agudo, E., Ortega-Huertas, M., & Hansen, E. (2005). Nanostructure and irreversible colloidal behavior of Ca (OH) 2: implications in cultural heritage conservation. Langmuir, 21(24), 10948-10957.

DOI: https://doi.org/10.1021/la051338f

[12] Snethlage, R. (2014). Stone conservation. In Stone in Architecture (pp.415-550). Springer, Berlin, Heidelberg.

[13] Ferroni, E., & Baglioni, P. (1986). Experiments on a proposed method for restoration of sulphated frescos. In Scientific methodologies applied to works of art. Proceedings of the symposium, florence, italy 2-5 may 1984 (pp.108-109). Montedison progetto cultura.

[14] Baglioni, P., & Giorgi, R. (2006). Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter, 2(4), 293-303.

DOI: https://doi.org/10.1039/b516442g

[15] Dei, L., Ahle, A., Baglioni, P., Dini, D., & Ferroni, E. (1998). Green degradation products of azurite in wall paintings: identification and conservation treatment. Studies in conservation, 43(2), 80-88.

DOI: https://doi.org/10.2307/1506644

[16] Chelazzi, D., Poggi, G., Jaidar, Y., Toccafondi, N., Giorgi, R., & Baglioni, P. (2013). Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. Journal of colloid and interface science, 392, 42-49.

DOI: https://doi.org/10.1016/j.jcis.2012.09.069

[17] Felice, B., Taglieri, G., Rigaglia, D., Arrizza, L., & Romè, V. (2015). The byzantine fresco of Dormitio Virginis (12th century): diagnosis and conservation by means of innovative materials. In Technart 2015 Non-destructive and microanalytical techniques in art and cultural heritage.

[18] Taglieri, G., Felice, B., Daniele, V., Volpe, R., & Mondelli, C. (2016). Analysis of the carbonatation process of nanosized Ca (OH) 2 particles synthesized by exchange ion process.Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 230(1), 25-31.

DOI: https://doi.org/10.1177/1740349914537616

[19] López-Arce, P., Gomez-Villalba, L. S., Pinho, L., Fernández-Valle, M. E., Alvarez de Buergo, M.., & Fort, R. (2010). Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques. Materials Characterization, 61(2), 168-184.

DOI: https://doi.org/10.1016/j.matchar.2009.11.007

[20] Ambrosi, M., Dei, L., Giorgi, R., Neto, C., & Baglioni, P. (2001). Colloidal particles of Ca (OH) 2: properties and applications to restoration of frescoes. Langmuir, 17(14), 4251-4255.

DOI: https://doi.org/10.1021/la010269b

[21] Tadros, T. F. (Ed.). (1987). Solid-liquid dispersions. Academic Press.

[22] Ziegenbalg, G. (2008). Colloidal calcium hydroxide: A new material for consolidation and conservation of carbonatic stones. In Proceedings of the 11th International Congress on Deterioration and Conservation of Stone, 15–20 September 2008, Torun, Poland (pp.1109-15).

[23] Dei, L., & Salvadori, B. (2006). Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. Journal of cultural Heritage, 7(2), 110-115.

DOI: https://doi.org/10.1016/j.culher.2006.02.001

[24] Nanni, A., & Dei, L. (2003). Ca (OH) 2 nanoparticles from W/O microemulsions. Langmuir, 19(3), 933-938.

DOI: https://doi.org/10.1021/la026428o

[25] Taglieri, G., Daniele, V., Del Re, G., & Volpe, R. (2015). A new and original method to produce Ca (OH) 2 nanoparticles by using an anion exchange resin. Advances in Nanoparticles, 4(02), 17.

DOI: https://doi.org/10.4236/anp.2015.42003

[26] Natali, I., Tomasin, P., Becherini, F., Bernardi, A., Ciantelli, C., Favaro, M., ... & Vivarelli, A. (2015). Innovative consolidating products for stone materials: field exposure tests as a valid approach for assessing durability. Heritage science, 3(1), 6.

DOI: https://doi.org/10.1186/s40494-015-0036-3

[27] Favaro, M., Chiurato, M., Tomasin, P., Ossola, F., El Habra, N., Brianese, N., ... & Orial, G. (2013, September). Alkaline earth alkoxides for conservation treatment of stone and wood in built heritage. In Proceedings of 3rd European Workshop on Cultural Heritage Preservation (EWCHP) Bolzano, Italy.

DOI: https://doi.org/10.1007/978-3-319-08533-3_35

[28] Gomez-Villalba, L. S., López-Arce, P., de Buergo, M. & Fort, R. (2011). Structural stability of a colloidal solution of Ca (OH) 2 nanocrystals exposed to high relative humidity conditions. Applied Physics A, 104(4), 1249.

DOI: https://doi.org/10.1007/s00339-011-6457-2

[29] Sierra-Fernandez, A., Gomez-Villalba, L. S., Rabanal, M. E., & Fort, R. (2017). New nanomaterials for applications in conservation and restoration of stony materials: A review. Materiales de Construcción, 67(325), 107.

DOI: https://doi.org/10.3989/mc.2017.07616

[30] Gomez-Villalba L.S. Lopez-Arce, P., Zornoza, A., Alvarez de BuergoAlvarez M.., & Fort, R. (2011). Evaluation of a consolidation treatment in dolostones by mean of calcium hydroxide nanoparticles in high relative humidity conditions. Boletín de la Sociedad Española de Cerámica y Vidrio, 50(2), 85-92.

DOI: https://doi.org/10.3989/cyv.122011

[31] López-Arce, P., Gomez-Villalba, L. S., Martínez-Ramírez, S., de Buergo, M. Á., & Fort, R. (2011). Influence of relative humidity on the carbonation of calcium hydroxide nanoparticles and the formation of calcium carbonate polymorphs. Powder technology, 205(1-3), 263-269.

DOI: https://doi.org/10.1016/j.powtec.2010.09.026

[32] López-Arce, P., & Zornoza-Indart, A. (2015). Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation. Applied Physics A, 120(4), 1475-1495.

DOI: https://doi.org/10.1007/s00339-015-9341-7

[33] Gomez-Villalba, L.S., López-Arce, P., de Buergo, M.A., Zornoza-Indart, A., & Fort, R. (2013). Mineralogical and textural considerations in the assessment of aesthetic changes in dolostones by effect of treatments with Ca (OH) 2 nanoparticles. Science and Technology for the Conservation of Cultural Heritage, 235-329.

DOI: https://doi.org/10.1201/b15577-55

[34] Gomez-Villalba, L. S., López-Arce, P., & Fort, R. (2012). Nucleation of CaCO3 polymorphs from a colloidal alcoholic solution of Ca (OH) 2 nanocrystals exposed to low humidity conditions. Applied Physics A, 106(1), 213-217.

DOI: https://doi.org/10.1007/s00339-011-6550-6

[35] Borsoi, G., Tavares, M., Veiga, R., & Silva, A. S. (2012). Microstructural characterization of consolidant products for historical renders: an innovative nanostructured lime dispersion and a more traditional ethyl silicate limewater solution. Microscopy and Microanalysis, 18(5), 1181-1189.

DOI: https://doi.org/10.1017/s1431927612001341

[36] Gomez-Villalba, L. S., López-Arce, P., de Buergo, M. A., Zornoza-Indart, A., & Fort, R. (2013). Mineralogical and textural considerations in the assessment of aesthetic changes in dolostones by effect of treatments with Ca (OH) 2 nanoparticles. Science and Technology for the Conservation of Cultural Heritage, Taylor & Francis Group, London, 235-329.

DOI: https://doi.org/10.1201/b15577-55

[37] Sierra-Fernandez, A., Gomez-Villalba, L. S., De la Rosa-García, S. C., Gomez-Cornelio, S., Quintana, P., Rabanal, M. E., & Fort, R. (2018). Inorganic Nanomaterials for the Consolidation and Antifungal Protection of Stone Heritage. In Advanced Materials for the Conservation of Stone (pp.125-149). Springer, Cham.

DOI: https://doi.org/10.1007/978-3-319-72260-3_6

[38] Al-Thawadi, S. M. (2011). Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J. Adv. Sci. Eng. Res, 1(1), 98-114.

[39] Li, W., Chen, W. S., Zhou, P. P., Zhu, S. L., & Yu, L. J. (2013). Influence of initial calcium ion concentration on the precipitation and crystal morphology of calcium carbonate induced by bacterial carbonic anhydrase. Chemical engineering journal, 218, 65-72.

DOI: https://doi.org/10.1016/j.cej.2012.12.034

[40] Baglioni, P., Chelazzi, D., & Giorgi, R. (2014). Nanotechnologies in the Conservation of Cultural Heritage: A compendium of materials and techniques. Springer.

[41] Giorgi, R., Dei, L., Ceccato, M., Schettino, C., & Baglioni, P. (2002). Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification. Langmuir, 18(21), 8198-8203.

DOI: https://doi.org/10.1021/la025964d

[42] Licchelli, M., Malagodi, M., Weththimuni, M., & Zanchi, C. (2014). Nanoparticles for conservation of bio-calcarenite stone.Applied Physics A, 114(3), 673-683.

DOI: https://doi.org/10.1007/s00339-013-7973-z

[43] Baglioni, P., Giorgi, R., & Chelazzi, D. (2012). Nano-materials for the conservation and preservation of movable and immovable Artworks. International Journal of Heritage in the Digital Era, 1(1_suppl), 313-318. www.nanoforart.eu.

DOI: https://doi.org/10.1260/2047-4970.1.0.313

[44] Baglioni, P. (2013). Conclusions: Future Horizons and Perspectives for Material Science in Cultural Heritage. Nanoscience for the Conservation of Works of Art, 28, 468.

DOI: https://doi.org/10.1039/9781849737630-00468

[45] Borsoi, G., Veiga, R., & Santos Silva, A. (2013, September). Effect of nanostructured lime-based and silica-based products on the consolidation of historical renders. In Proceedings of 3rd Historic Mortars Conference HMC13 (pp.11-14).

[46] Padeletti, G., & Fermo, P. (2003). How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period. Applied Physics A, 76(4), 515-525.

DOI: https://doi.org/10.1007/s00339-002-1935-1

[47] Garcia Vallès, M., & Vendrell Saz, M. (2002). The glasses of the transept's rosette of the Cathedral of Tarragona: characterization, classification and decay. Boletin de la Sociedad Española de Ceramica y Vidrio, 2002, vol. 41, num. 2, pp.217-224.

DOI: https://doi.org/10.3989/cyv.2002.v41.i2.681

[48] Colomban, P. (2009). The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure. In Journal of Nano Research (Vol. 8, pp.109-132). Trans Tech Publications.

DOI: https://doi.org/10.4028/www.scientific.net/jnanor.8.109

[49] Bertolini Cestari, C., & Marzi, T. (2018). Conservation of historic timber roof structures of Italian architectural heritage: diagnosis, assessment, and intervention. International Journal of Architectural Heritage, 1-34.  http://www.innovafvg.it.

DOI: https://doi.org/10.1080/15583058.2018.1442523

[50] Naka, Y., Komori, Y., & Yoshitake, H. (2010). One-pot synthesis of organo-functionalized monodisperse silica particles in W/O microemulsion and the effect of functional groups on addition into polystyrene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361(1-3), 162-168.

DOI: https://doi.org/10.1016/j.colsurfa.2010.03.034

[51] Rahma, I. A., Vejayakumaran, P., Sipaut, C. S., Ismail, J., Bakar, M. A., Adnan, R., & Chee, C. K. (2007). An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294(1-3), 102-110.

DOI: https://doi.org/10.1016/j.colsurfa.2006.08.001

[52] Zornoza-Indart, A., Lopez-Arce, P., Leal, N., Simão, J., & Zoghlami, K. (2016). Consolidation of a Tunisian bioclastic calcarenite: From conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Construction and Building Materials, 116, 188-202.

DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.114

[53] Mosquera, M. J., de los Santos, D. M., & Rivas, T. (2010). Surfactant-synthesized ormosils with application to stone restoration. Langmuir, 26(9), 6737-6745.

DOI: https://doi.org/10.1021/la9040979

[54] Facio, D.S., Luna, M., & Mosquera, M.J. (2017). Facile preparation of mesoporous silica monoliths by an inverse micelle mechanism. Microporous and Mesoporous Materials, 247, 166-176.

DOI: https://doi.org/10.1016/j.micromeso.2017.03.041

[55] Zarzuela, R., Luna, M., Carrascosa, L. A., & Mosquera, M. J. (2018). Preserving Cultural Heritage Stone: Innovative Consolidant, Superhydrophobic, Self-Cleaning, and Biocidal Products. In Advanced Materials for the Conservation of Stone(pp.259-275). Springer, Cham.

DOI: https://doi.org/10.1007/978-3-319-72260-3_12

[56] Verganelaki, A., Kilikoglou, V., Karatasios, I., & Maravelaki-Kalaitzaki, P. (2014). A biomimetic approach to strengthen and protect construction materials with a novel calcium-oxalate–silica nanocomposite. Construction and Building Materials, 62, 8-17.

DOI: https://doi.org/10.1016/j.conbuildmat.2014.01.079

[57] Ion, R. M., Turcanu-Carutiu, D., Fierascu, R. C., & Fierascu, I. (2014). Chalk stone restoration with hydroxyapatite–based nanoparticles. The Scientific Bulletin Of Valahia University-Materials and Mechanics, 9, 16-19.

DOI: https://doi.org/10.4028/www.scientific.net/kem.660.383

[58] Giorgi, R., Dei, L., Ceccato, M., Schettino, C., & Baglioni, P. (2002). Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification. Langmuir, 18(21), 8198-8203.

DOI: https://doi.org/10.1021/la025964d

[59] Poggi, G., Toccafondi, N., Melita, L. N., Knowles, J. C., Bozec, L., Giorgi, R., & Baglioni, P. (2014). Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts. Applied Physics A, 114(3), 685-693.

DOI: https://doi.org/10.1007/s00339-013-8172-7

[60] Baty, J. W., Maitland, C. L., Minter, W., Hubbe, M. A., & Jordan-Mowery, S. K. (2010). Deacidification for the conservation and preservation of paper-based works: A review. BioResources, 5(3), 1955-(2023).

[61] Kozak, J. J., & Spatz, R. E. (1989). Deacidification of Paper by the Bookkeeper. Paper Preservation, 129-132.

[62] Poggi, G., Giorgi, R., Toccafondi, N., Katzur, V., & Baglioni, P. (2010). Hydroxide nanoparticles for deacidification and concomitant inhibition of iron-gall ink corrosion of paper. Langmuir, 26(24), 19084-19090.

DOI: https://doi.org/10.1021/la1030944

[63] Poggi, G., Baglioni, P., & Giorgi, R. (2011). Alkaline earth hydroxide nanoparticles for the inhibition of metal gall ink corrosion. Restaurator, 32(3), 247-273.

DOI: https://doi.org/10.1515/rest.2011.012

[64] Sierra-Fernandez, A., Gomez-Villalba, L. S., Rabanal, M. E., Fort, R., & Csóka, L. (2016). Application of magnesium hydroxide nanocoatings on cellulose fibers with different refining degrees. RSC Advances, 6(57), 51583-51590.

DOI: https://doi.org/10.1039/c6ra10336g

[65] Natali, I., Tempesti, P., Carretti, E., Potenza, M., Sansoni, S., Baglioni, P., & Dei, L. (2014). Aragonite crystals grown on bones by reaction of CO2 with nanostructured Ca (OH) 2 in the presence of collagen. Implications in archaeology and paleontology. Langmuir, 30(2), 660-668.

DOI: https://doi.org/10.1021/la404085v

[66] Giorgi, R., Chelazzi, D., & Baglioni, P. (2005). Nanoparticles of calcium hydroxide for wood conservation. The deacidification of the Vasa warship. Langmuir, 21(23), 10743-10748.

DOI: https://doi.org/10.1021/la0506731

[67] Giorgi, R., Bozzi, C., Dei, L., Gabbiani, C., Ninham, B. W., & Baglioni, P. (2005). Nanoparticles of Mg (OH) 2: synthesis and application to paper conservation. Langmuir, 21(18), 8495-8501.

DOI: https://doi.org/10.1021/la050564m

[68] Amornkitbamrung, L., Mohan, T., Hribernik, S., Reichel, V., Faivre, D., Gregorova, A.,... & Ribitsch, V. (2015). Polysaccharide stabilized nanoparticles for deacidification and strengthening of paper. RSC Advances, 5(42), 32950-32961.

DOI: https://doi.org/10.1039/c4ra15153d

[69] Giorgi, R., Chelazzi, D., & Baglioni, P. (2006). Conservation of acid waterlogged shipwrecks: nanotechnologies for de-acidification. Applied Physics A, 83(4), 567-571.

DOI: https://doi.org/10.1007/s00339-006-3542-z

[70] Ion, R. M., Doncea, S. M., Ion, M. L., Rădiţoiu, V., & Amăriuţei, V. (2013). Surface investigations of old book paper treated with hydroxyapatite nanoparticles. Applied Surface Science, 285, 27-32.

DOI: https://doi.org/10.1016/j.apsusc.2013.07.159

[71] Ion, R. M., Doncea, S. M., & Ţurcanu-Caruțiu, D. (2018). Nanotechnologies in Cultural Heritage-Materials and Instruments for Diagnosis and Treatment.

DOI: https://doi.org/10.5772/intechopen.71950

[72] Reina, G., Orlanducci, S., Tamburri, E., & Terranova, M. L. (2014, June). Nanotechnologies for cultural heritage: Nanodiamond for conservation of papers and parchments. In AIP Conference Proceedings (Vol. 1603, No. 1, pp.93-101). AIP.

DOI: https://doi.org/10.1063/1.4883047

[73] Schofield, E. J., Sarangi, R., Mehta, A., Jones, A. M., Smith, A., Mosselmans, J. F. W., & Chadwick, A. V. (2016). Strontium carbonate nanoparticles for the surface treatment of problematic sulfur and iron in waterlogged archaeological wood. Journal of Cultural Heritage, 18, 306-312.

DOI: https://doi.org/10.1016/j.culher.2015.07.013

[74] Hamed, S. A. M. (2013). Possibilities application of nanoscience and nanotechnology in conservation of archaeological wood: A review. Jokull Journal, 63, 9-19.

[75] Afsharpour, M., Rad, F. T., & Malekian, H. (2011). New cellulosic titanium dioxide nanocomposite as a protective coating for preserving paper-art-works. Journal of Cultural Heritage, 12(4), 380-383.

DOI: https://doi.org/10.1016/j.culher.2011.03.001

[76] El-Feky, O. M., Hassan, E. A., Fadel, S. M., & Hassan, M. L. (2014). Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging. Journal of Cultural Heritage, 15(2), 165-172.

DOI: https://doi.org/10.1016/j.culher.2013.01.012

[77] Gholamiyan, H., Tarmian, A., Doost Hosseini, K., & Azadfallah, M. (2012). The potential use of organosilane water soluble nanomaterials as water vapor diffusion retarders for wood. Maderas. Ciencia y tecnología, 14(1), 43-52.

DOI: https://doi.org/10.4067/s0718-221x2012000100004

[78] Carretti, E., Fratini, E., Berti, D., Dei, L., & Baglioni, P. (2009). Nanoscience for Art Conservation: Oil in Water Microemulsions Embedded in a Polymeric Network for the Cleaning of Works of Art. Angewandte Chemie International Edition, 48(47), 8966-8969.

DOI: https://doi.org/10.1002/anie.200904244

[79] Baglioni, M., Rengstl, D., Berti, D., Bonini, M., Giorgi, R., & Baglioni, P. (2010). Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale. Nanoscale, 2(9), 1723-1732.

DOI: https://doi.org/10.1039/c0nr00255k

[80] Baglioni, M., Berti, D., Teixeira, J., Giorgi, R., & Baglioni, P. (2012). Nanostructured surfactant-based systems for the removal of polymers from wall paintings: a small-angle neutron scattering study. Langmuir, 28(43), 15193-15202.

DOI: https://doi.org/10.1021/la303463m

[81] Chelazzi, D., Giorgi, R., & Baglioni, P. (2017). Microemulsions, Micelles and Functional Gels. How Colloid and Soft Matter Preserve Works of Art. Angewandte Chemie International Edition.

DOI: https://doi.org/10.1002/anie.201710711

[82] Baglioni, P., Bonelli, N., Chelazzi, D., Chevalier, A., Dei, L., Domingues, J.,... & Martin, M. (2015). Organogel formulations for the cleaning of easel paintings. Applied Physics A, 121(3), 857-868.

DOI: https://doi.org/10.1007/s00339-015-9364-0

[83] Baglioni, P., Giorgi, R., & Chelazzi, D. (2012). Nano-materials for the conservation and preservation of movable and immovable Artworks. International Journal of Heritage in the Digital Era, 1(1_suppl), 313-318.

DOI: https://doi.org/10.1260/2047-4970.1.0.313

[84] Domingues, J. A., Bonelli, N., Giorgi, R., Fratini, E., Gorel, F., & Baglioni, P. (2013). Innovative hydrogels based on semi-interpenetrating p (HEMA)/PVP networks for the cleaning of water-sensitive cultural heritage artifacts. Langmuir, 29(8), 2746-2755.

DOI: https://doi.org/10.1021/la3048664

[85] Pianorsi, M. D., Raudino, M., Bonelli, N., Chelazzi, D., Giorgi, R., Fratini, E., & Baglioni, P. (2017). Organogels for the cleaning of artifacts. Pure and Applied Chemistry, 89(1), 3-17.

DOI: https://doi.org/10.1515/pac-2016-0908

[86] Carretti, E., Bonini, M., Dei, L., Berrie, B. H., Angelova, L. V., Baglioni, P., & Weiss, R. G. (2010). New frontiers in materials science for art conservation: responsive gels and beyond. Accounts of chemical research, 43(6), 751-760.

DOI: https://doi.org/10.1021/ar900282h

[87] Bonini, M., Lenz, S., Giorgi, R., & Baglioni, P. (2007). Nanomagnetic sponges for the cleaning of works of art. Langmuir, 23(17), 8681-8685.

DOI: https://doi.org/10.1021/la701292d

[88] Baglioni, P., Chelazzi, D., & Giorgi, R. (2015). Innovative Nanomaterials: Principles, Availability and Scopes. In Nanotechnologies in the Conservation of Cultural Heritage (pp.1-14). Springer, Dordrecht.

DOI: https://doi.org/10.1007/978-94-017-9303-2_1

[89] Salama, K. K., Ali, M. F., El-Sheikh, M. S., Nada, A. A., & Betiha, M. A. (2017). A new way in synthesizing magnetic nano gel for cleaning an egyptian coptic fresco painting.. Mediterranean Archaeology and Archaeometry, 17(1), 189-195.

[90] Blee, A., Martin, J.G., (2008), Nanoparticles and the Conservation of Cultural Heritage, Materials Forum 32, pp.123-127.

[91] Eyssautier-Chuine, S., Gommeaux, M., Moreau, C., Thomachot-Schneider, C., Fronteau, G., Pleck, J., & Kartheuser, B. (2014). Assessment of new protective treatments for porous limestone combining water-repellency and anti-colonization properties. Quarterly Journal of Engineering Geology and Hydrogeology, 47(2), 177-187.

DOI: https://doi.org/10.1144/qjegh2013-026

[92] Pinho, L., Rojas, M., & Mosquera, M. J. (2015). Ag–SiO2–TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials. Applied Catalysis B: Environmental, 178, 144-154.

DOI: https://doi.org/10.1016/j.apcatb.2014.10.002

[93] Zarzuela, R., Luna, M., Carrascosa, L. A., & Mosquera, M. J. (2018). Preserving Cultural Heritage Stone: Innovative Consolidant, Superhydrophobic, Self-Cleaning, and Biocidal Products. In Advanced Materials for the Conservation of Stone(pp.259-275). Springer, Cham.

DOI: https://doi.org/10.1007/978-3-319-72260-3_12

[94] Zarzuela, R., Carbú, M., Gil, M. A., Cantoral, J. M., & Mosquera, M. J. (2017). CuO/SiO2 nanocomposites: a multifunctional coating for application on building stone. Materials & Design, 114, 364-372.

DOI: https://doi.org/10.1016/j.matdes.2016.11.009

[95] Sierra-Fernandez, A., De la Rosa-García, S. C., Gomez-Villalba, L. S., Gomez-Cornelio, S., Rabanal, M. E., Fort, R., & Quintana, P. (2017). Synthesis, photocatalytic, and antifungal properties of MgO, ZnO and Zn/Mg oxide nanoparticles for the protection of calcareous stone heritage. ACS applied materials & interfaces, 9(29), 24873-24886.

DOI: https://doi.org/10.1021/acsami.7b06130

[96] Gherardi, F., Colombo, A., D'Arienzo, M., Di Credico, B., Goidanich, S., Morazzoni, F.,... & Toniolo, L. (2016). Efficient self-cleaning treatments for built heritage based on highly photo-active and well-dispersible TiO2 nanocrystals. Microchemical Journal, 126, 54-62.

DOI: https://doi.org/10.1016/j.microc.2015.11.043

[97] De Filpo, G., Palermo, A. M., Rachiele, F., & Nicoletta, F. P. (2013). Preventing fungal growth in wood by titanium dioxide nanoparticles. International Biodeterioration & Biodegradation 85, 217-222.

DOI: https://doi.org/10.1016/j.ibiod.2013.07.007