Evaluation of Multi-Functional Silica-Based Nano-Products for Consolidating and Protecting Stone Material from Archaeological Sites

Abstract:

Article Preview

A silica-based nanoproduct - UCAT-10P© - developed and patented by the TEP-243 (Molecular sieves and other nanomaterials) group of the Cadiz University (UCA) is applied on two stone materials – granite and marble – from the stage front of the Roman theater of Merida, World Heritage by UNESCO (1993). Marble shows firstly scaling as the main decay form, and granite, grain-disintegration, which, at the same time, favor an acceleration of their deterioration condition due to physical, mechanical, chemical and biological processes. That is the reason of assessing the efficiency and durability of a multifuncional nanoproduct, with both consolidating and hydrophobing effects. The performance of this product has been evaluated in terms of the appearance of the stone surfaces (color and roughness), the consolidating role (hardness and ultrasound velocity) and the hydrophobing achievements (capillarity and water contact angle). The most distinctive feature of this research is the in situ testing of the stone blocks, the use of mostly non-destructive and portable techniques, and the monitoring of the product performance of the treatment at a short (1 month) and mid-term (12-15 months), proving the efficacy of the product, although its behavior changes with time.

Info:

Periodical:

Solid State Phenomena (Volume 286)

Edited by:

Luz Stella Gomez-Villalba

Pages:

95-104

Citation:

N. Perez-Ema and M. Alvarez de Buergo, "Evaluation of Multi-Functional Silica-Based Nano-Products for Consolidating and Protecting Stone Material from Archaeological Sites", Solid State Phenomena, Vol. 286, pp. 95-104, 2019

Online since:

January 2019

Export:

Price:

$41.00

[1] PEREZ-EMA, N. (2017) Evaluation of effects arising from restoration interventions carried out on stone material: Roman Theatre and Mitreo's house of Merida. PhD Thesis. Polytechnique University of Madrid.

[2] GÓMEZ-VILLALBA, L.S., LÓPEZ-ARCE, P., FORT, R., ÁLVAREZ DE BUERGO, M. & ZORNOZA, A. (2011) Aplicación de nanopartículas a la consolidación del patrimonio pétreo., La Ciencia y el Arte III. pp.39-59.

[3] ILLESCAS, J.F. & MOSQUERA, M.J. (2014) Increasing surface roughness of coatings to promote high-hydrophobicity,. Science, Technology and Cultural Heritage. M.A. Rogerio-Candelera (Ed.). CRC Press (Taylor & Francis group), ISBN: 978-1-138-02744-2.

[4] MOSQUERA, M.J. (2013) Nuevos Productos para Restauración y Conservación del Patrimonio Cultural,. RIIPAC: Revista sobre Patrimonio Cultural (Regulación, Propiedad Intelectual e Industrial) ISSN-e 2255-1565, Nº. 3 (December), pp.153-172.

[5] FERREIRA PINTO, A.P., DELGADO RODRIGUES, J. (2008) Stone consolidation: The role of treatment procedures,. Journal of Cultural Heritage 9, pp.38-53..

DOI: https://doi.org/10.1016/j.culher.2007.06.004

[6] FRANZONI, E., GRAZIANI, G., SASSONI, E., BACILIERI, G., GRIFFA, M., LURA, P. (2015) Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration depth, efficacy and pore occlusion,. Materials and structures..

DOI: https://doi.org/10.1617/s11527-014-0417-1

[7] AENOR (2011). Conservación del patrimonio cultural. Métodos de ensayo. Medición del color de superficies. UNE-EN 15886:2011. Madrid: AENOR.

[8] ASTM E313: 2013 Estándar práctico para calcular los índices de amarillamiento y blancura a partir de coordenadas de color medidas instrumentalmente.

[9] VÁZQUEZ-CALVO, C., ÁLVAREZ DE BUERGO, M., FORT, R., VARAS-MURIEL, M.J. (2012) The measurement of surface roughness to determine the suitability of different methods for stone cleaning,. Journal of Geophysics and Engineering 9, pp.108-117.

DOI: https://doi.org/10.1088/1742-2132/9/4/s108

[10] YAŞAR, E., ERDOĞAN Y. (2004) Estimation of rock physicomechanical properties using hardness methods,. Engineering Geology 71 (3), pp.281-288.

DOI: https://doi.org/10.1016/s0013-7952(03)00141-8

[11] AENOR (2009) Conservación del patrimonio cultural. Métodos de ensayo. Determinación de la absorción de agua por capilaridad. UNE- EN 15801:2009. Madrid: AENOR.

[12] MARAVELAKI-KALAITZAKI P., KALLITHRAKAS-KONTOS N., AGIOUTANTIS Z., MAURIGIANNAKIS S. Y KORAKAKI D. (2008). A comparative study of porous limestones treated with silicon-based strengthening agents,. Progress in Organic Coatings 62 (1), pp.49-60.

DOI: https://doi.org/10.1016/j.porgcoat.2006.08.007

[13] NAIDU, S., SCHERER, G.W. (2014) Nucleation, growth and evolution of calcium phosphate films on calcite,. Journal of Colloidal and Interface Science, 435, pp.128-137.

[14] VÁZQUEZ-CALVO, C., ÁLVAREZ DE BUERGO, M., FORT, R., VARAS-MURIEL, M.J. (2012) The measurement of surface roughness to determine the suitability of different methods for stone cleaning,. Journal of Geophysics and Engineering 9, pp.108-117.

DOI: https://doi.org/10.1088/1742-2132/9/4/s108