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Abstract. In this study, machine learning (ML) was employed to predict the electrical properties of 
finished devices, specifically focusing on the state of the contacts at the electrodes. The predictions 
are based on optical microscope images of the surface conditions, which were captured immediately 
following the laser doping of nitrogen atoms into 4H-SiC. The laser doping process involved varying 
the laser fluence from 0.4 to 4.0 J/cm2 and using number of laser irradiation to 5, 10, 20, and 100 
shots. The ML prediction was carried out in two steps. In STEP1, we classified the contact status into 
three types.: 1) Schottky junctions (insufficient doping), 2) Ohmic contact (good contact), and 3) Not 
ohmic (damage caused by laser irradiation). In STEP2, contact resistance prediction (numerical 
regression) was performed using the dataset predicted as an ohmic contact. As a result, we found that 
the three classifications in STEP1 could be predicted with a high accuracy of over 88%. Furthermore, 
the contact resistance prediction in STEP2 could be made with an accuracy (RMSPE: root mean 
square percent error) of 27.2%. Visualizing the prediction basis of numerical regression using 
modulus-reweighted grad-regression activation mapping (MoRAM) revealed that the ML model 
focused on the inside of the laser-irradiated area in the optical microscope image. The results of the 
scanning electron microscopy observation of the laser-irradiated area showed that ablation and 
residuals were generated during laser doping in that area. Consequently, it was concluded that our 
ML model predicted the contact resistance of the finished device taking into consideration these 
surface conditions. Even highly-skilled laser doping technicians have difficulty predicting the 
resistance values arising from the ablation and residue conditions. Based on above results, we 
conclude that our ML model is capable of predicting the electrical characteristics of a finished device, 
a task that is often considered challenging for humans. 

Introduction 
Laser doping has been investigated as a promising doping method for silicon carbide (SiC). 

Generally, the ion implantation + furnace annealing method is used as the doping technique. For SiC 
doping, the heat generated during the annealing process causes crystal defects in the SiC. In contrast, 
laser doping irradiates lasers locally and for an extremely short time, completing dopant addition and 
dopant activation in the same process. This reduces the impact of heat on SiC substrates and 
streamlines the device fabrication process. In addition, laser doping is more efficient than ion 
implantation for doping ultrasurface layers at higher concentrations. We focused on these distinct 
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features of laser doping, aiming to create high-concentration n-type 4H-SiC using this technique to 
minimize contact resistance in the electrode formation area of 4H-SiC devices [1,2]. 

In laser doping, it is necessary to identify the optimal conditions from a large number of control 
parameters to achieve the desired doping state. Especially for semiconductor devices, it is highly 
time-consuming to find the optimum conditions because it is necessary not only to evaluate physical 
properties, such as concentration and damage after laser doping, but also to fabricate prototypes of 
the devices and evaluate their electrical characteristics. 

In this study, we have employed machine learning (ML) to predict the electrical properties of 4H-
SiC laser-doped devices for reducing the lead-time required when developing semiconductor devices. 

Experimental Methods 
Device Process. The laser-doping process is illustrated in Fig. 1. First, a 100 nm thick silicon 

nitride (SiN) film is deposited on a SiC wafer through plasma chemical vapor deposition or CVD 
(Fig. 1 (a)). Next, the SiN film undergoes ablation via irradiation using a krypton fluoride (KrF) 
excimer laser (Gigaphoton, Inc.), and nitrogen is doped into the SiC (Fig. 1 (b)). Subsequently, the 
SiN film is removed using hot phosphoric acid (Fig. 1 (c)). Then, CF4 and O2 plasma + BHF solution 
treatments are used to remove residues in the laser-irradiated area (Fig. 1 (d)). To quantitatively 
measure contact resistance, electrodes with contact holes ranging from 5×5 to 40×40 µm2 are formed 
in the laser-doped area (Fig. 1 (e)). In this study, two parameters of laser doping were varied: laser 
fluence (0.4~4.0 J/cm2) and number of laser irradiation (5, 10, 20, 100 shots). 

 

 
Fig. 1. Laser doping process flow. 

 
Machine Learning (ML) Prediction. We performed laser doping under exhaustive conditions 

by combining laser fluence and number of laser irradiation and obtained optical microscope images 
immediately after laser-irradiation, which is shown in Fig. 1 (b). These image data were used as 
explanatory variables. We utilized the contact state of the electrode formation and contact resistance 
to evaluate the electrical characteristics of the device. These characteristics were used as objective 
variables. Our ML model was implemented using VGG16, a trained convolutional neural network 
model. ML prediction was performed in two steps. In STEP1, we classified all the conditions we have 
prepared into three types of contact states: 1) Schottky junctions (insufficient doping), 2) Ohmic 
contact (good contact), and 3) Not ohmic (damage caused by laser irradiation). We assembled a 
dataset comprising 532 images, with 380 allocated for training and 152 for validation. In STEP2, we 
conducted a numerical regression to predict the contact resistance based on conditions classified as 
ohmic. Our dataset for this step comprised 266 images, with 190 allocated for training and 76 for 
validation. 
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Fig. 2. Flow of the prediction process. 

 

Visualization of ML Prediction Basis. Gradient-weighted Class Activation Mapping 
(GradCAM ) is a technique for visualizing the basis for ML predictions in the field of image 
recognition [3]. This technique generates a heatmap that highlights the pixels of an input image that 
the ML model pays attention to, and to what extent it does so during classification prediction. In 
numerical regression, the decision-basis visualization technique is called regression activation 
mapping (RAM), with modulus-reweighted grad-RAM (MoRAM) proposed as a derivative of Grad-
CAM [4]. In this study, we employed MoRAM to visualize the basis of decisions in a numerical 
regression. 

Results and Discussions 

STEP1: Three Classifications of Contact Status. Table 1 presents the classification accuracy 
of STEP1, which was 88% or higher for all three accuracy indices: Precision, Recall, and F-measure. 
Precision represents the percentage of correct predictions of the total number of predictions for a class. 
Recall indicates the percentage of correct predictions out of the total number of predictions for a given 
class and measurement. F-measure is the harmonic mean of Precision and Recall. 

 
Table 1. Classification accuracy index 

 
 

STEP2: Contact Resistance Regression. The prediction results for STEP2 are depicted in Fig. 
3. The vertical axis represents the measured values and the horizontal axis represents the predicted 
values. Figure 3 illustrates the correlation between the measured and predicted values, with a 
prediction accuracy (RMSPE: Root Mean Square Percent Error; the lower the value, the higher the 
accuracy) of 27.2%. Table 2 lists the measured contact resistances, numerical regression predictions, 
and prediction accuracies for each shot number. Table 2 indicates that the contact resistance for 5, 10, 
and 20 shots is in the 10–6 Ωcm2 range, which is sufficiently low. In contrast, the contact resistance 
for 100 shots is notably worse. The RMSPE for 5, 10, and 20 shots were 28.4, 25.2, and 9.9%, 
respectively. Conversely, the RMSPE at 100 shots is 39.8%, signifying a lower prediction accuracy 
compared to lower number of irradiations. Previous experiments conducted by our research group 
have demonstrated that even when laser doping is performed at the fluence of the conditions that 
allow ohmic contact to be obtained, internal defects develop, leading to a degradation of contact 
resistance as the number of shots increases [2]. Since the data presented in this study comprises optical 
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microscopy images of the surface, they do not include information on the crystal defects formed 
internally. Thus, the reduced prediction accuracy is attributed to the formation of these internal 
defects. 

 
Fig. 3. Prediction result 

 

Table 2. Measurement, prediction and RMSPE based on number of irradiations. 

 
 
Visualization of ML Prediction Basis. Figure 4 displays the optical microscope images of the 

laser-irradiated area utilized in STEP2, arranged by irradiation conditions (horizontal axis: fluence; 
vertical axis: number of irradiations). Figure 5 illustrates the results of visualization using MoRAM. 
Under all conditions, the ML model focused on the laser-irradiated area and the ablation pattern that 
appeared in it. In the 100-shots condition, the ML model placed strong emphasis on the region near 
the boundary between the irradiated and unirradiated areas. Furthermore, Fig. 6 showcases the optical 
microscopy images, MoRAM visualization results, scanning electron microscopy (SEM) images, and 
cross-sectional images for specific fluence conditions at 10 shots. At 1.8 J/cm2, residue from the SiN 
film is evident, as confirmed by SEM images. At 2.6 J/cm2, it is apparent that more dopants are 
introduced compared to 1.8 J/cm2. Meanwhile, at 3.0 J/cm2, the surface condition determined by SEM 
is not significantly different from that at 2.6 J/cm2, but the contact resistance increased. This is 
attributed to defects within the crystal caused by the high fluence, which degrades the electrical 
conductivity. From the prediction-basis visualization and SEM observations, it is assumed that the 
surface conditions, such as ablation and residue on the surface, undergo changes depending on the 
irradiation conditions, with the ML model recognizing the changes in the surface conditions to predict 
the contact resistance. 
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Fig. 4. Irradiated area images. 

 

 
Fig. 5. Visualization result using MoRAM. 

 

 
Fig. 6. Optical images, MoRAM visualization results, SEM images  

and cross-sectional images at partial fluence of 10shots 

Conclusions 
In this study, we employed ML to predict the contact state of electrode formation in the finished 

device using images of surface conditions immediately after laser doping. In STEP1, we conducted a 
three-category prediction (Schottky, Ohmic, and Not non-ohmic) and achieved an accuracy of over 
88%. In STEP2, we employed numerical regression to predict contact resistance using the ohmic 
dataset, achieving an accuracy of RMSPE=27.2%. When the prediction basis visualization was 
performed using MoRAM, the ML model focused on the laser-irradiated area. As a result of 
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observation within the laser-irradiated area by SEM, ablation and residue material generated during 
laser doping was left in that area. The ML model may predict the contact resistance of the finished 
device from these surface conditions. Even a highly-skilled laser-doping engineer would have 
difficulty predicting contact resistance from ablation and residue conditions. Based on these results, 
we conclude that our ML model is capable of estimating the electrical characteristics of a finished 
device, a task that is challenging for humans to predict. 
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