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Abstract. In this paper, we propose a novel 1200V SiC MOSFET featuring the embedded junction-
controlled-diode (JCD-MOSFET) and demonstrate its static and dynamic characteristics through 
TCAD simulations. Without sacrificing blocking and conduction performance, the adoption of JCD 
can effectively reduce knee voltage to 1.7V based on unipolar carrier conduction mode. Due to the 
reduced peak reverse recovery current and reverse recovery charge, the JCD-MOSFET achieves 
30.8% lower turn-on losses than conventional MOSFET. Meanwhile, the fabrication process for the 
JCD-MOSFET is the same as conventional MOSFET without an extra mask. This proposed JCD-
MOSFET prototype shows great potential in target applications in the near future. 

Introduction 
SiC MOSFETs characterize both low conduction and switching losses under a wide range of 

blocking voltages, which are suitable for industrial and automotive applications, e.g., uninterruptible 
power supply, energy storage systems, and main drive inverters of electric vehicles [1]. The adoption 
of an internal freewheeling diode, i.e., PN body diode, of SiC MOSFET enables switching operation 
without external diode chips. However, the operation of PN body diodes has a high knee voltage Vknee 
(~2.7V) with the risk of bipolar degradation. To alleviate these issues, several unipolar diode 
integration strategies have been proposed, such as Schottky-barrier-diode-embedded and source or 
gate-controlled channel-diode-embedded SiC MOSFETs [2-4]. Unfortunately, these strategies bring 
a huge challenge between blocking and conduction capability. Moreover, complicated fabrication 
processes are also required.  

In the paper, we propose a novel 1200V junction-controlled-diode-embedded SiC MOSFET (JCD-
MOSFET), offering lowered knee voltage, reduced reverse recovery charge and turn-on losses, as 
well as compatible fabrication process as conventional planar SiC MOSFET (C-MOSFET). 
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Fig. 1. (a) Cross-section structure and (b) equivalent circuit of the proposed JCD-MOSFET. 
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Device Structure and Design Concept 
The cross-section structure and equivalent circuit of the proposed JCD-MOSFET are shown in 

Fig.1. Additionally, for comparison, a 1200V/80mΩ C-MOSFET is also characterized, and the 
physical parameters and device area are the same for C- and JCD-MOSFET [5]. 

There is a JCD embedded into the adjacent P-well of JCD-MOSFET as shown in the red line of 
Fig. 1. Due to the current spreading layer (CSL) between the adjacent P-well being fully depleted, 
the JCD generates a low potential barrier as shown in Fig. 2(a). As VDS reaches -1.7V, electrons can 
flow from the N- drift to N+ source region by overcoming the potential barrier of JCD as shown in 
Fig. 2(b). 

(b)  
Fig. 2. Three-dimensional conduction band energy EC distribution of JCD under zero applied bias 
and (b) EC distribution along line M-N in Fig. 1 under various VDS. 

The JCD can turn on at 1.7V through unipolar conduction as shown in Fig. 3(a), which is much 
lower than that of PN body diode. Moreover, thanks to reduced holes injected from the body diode 
as shown in Fig. 3(b), the bipolar conduction mode is significantly suppressed. Furthermore, on one 
hand, the potential barrier decreases with the wider channel width Lj of JCD, achieving the reduction 
of Vknee as shown in Fig. 4(a). On the other hand, the wider Lj weakens blocking capability because 
of the premature breakdown of JCD as shown in Fig. 4(b). 
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Fig. 3. (a) Third quadrant characteristics and (b) hole density distributions at IDS=-10A for C- and 
JCD-MOSFET. 
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Fig. 4. Influence of Lj on (a) EC distribution along line M-N in Fig. 1 under zero applied bias, (b) 

Vknee, and BV for JCD-MOSFET. 

Results and Discussion 
As shown in Fig. 5, the JCD-MOSFET exhibits the same ON-resistance RDS(on) of 80mΩ at 

VGS=20V and breakdown voltage BV of 1597V at VGS=-5V as C-MOSFET. This is because the JCD 
is in OFF-state when the JCD-MOSFET operates in the first quadrant. 
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Fig. 5. (a) Output characteristics and (b) breakdown voltage characteristics for C- and JCD-

MOSFET. 
Moreover, the peak reverse recovery current and reverse recovery charge (Qrr) of JCD-MOSFET 

are only 22.7A and 117.9nC as shown in Fig. 6, which reduces 36.6% and 43.3% compared with C-
MOSFET, respectively. This improvement is thanks to the absence of hole injection when the JCD 
turns on. The JCD-MOSFET shows the same turn-off characteristic as that of C-MOSFET as shown 
in Fig. 7(a), whereas the JCD-MOSFET reduces the turn-on losses Eon by 30.8% as the C-MOSFET 
owing to lower reverse recovery charge as shown in Fig. 7(b).  
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Fig. 6. (a) Reverse recovery characteristics of the diodes in C- and JCD-MOSFET and (b) 

inductive load double-pulse test circuit. 
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Fig. 7. (a) Turn-off and (b) turn-on waveforms of C- and JCD-MOSFET. 

Furthermore, we also provide an available fabrication process flow of the JCD-MOSFET without 
adding an extra mask as shown in Fig. 8. The electrical performance comparison between C-and JCD-
MOSFET is shown in Table I, demonstrating that this work provides a cost-effective design strategy 
to improve SiC MOSFET performance. 
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Fig. 8.  Available fabrication process of the proposed JCD-MOSFET. 

TABLE I 
Performance Comparision of SiC C-MOSFET and JCD-MOSFET

RDS(on)
BV

Vknee
Qrr
Eon
Eoff

C-MOSFET JCD-MOSFET Unit
mΩ
V
V
nC
µJ
µJ

80 80
1597 1597
2.7 1.7

207.9
230.6

23.6

117.9
159.5

23.6
 

Summary 
In this paper, we propose a novel JCD-MOSFET that realizes lowered Vknee, reduced Qrr and Eon, as 
well as compatible fabrication process as C-MOSFET simultaneously. The embedded JCD turns on 
when the VDS reaches -1.7V and achieves unipolar carrier conduction. Compared with C-MOSFET, 
the peak reverse recovery current and Qrr of JCD-MOSFET are reduced by 36.6% and 43.3%, 
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respectively. As a result, the JCD-MOSFET shows a 30.8% lower Eon than that of C-MOSFET. 
Meanwhile, an available fabrication process flow of the JCD-MOSFET without adding an extra mask 
is also proposed. 
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