# Dynamic On-State Resistance and Threshold-Voltage Instability in SiC MOSFETs

Submitted: 2023-09-28

Accepted: 2024-04-15

Revised: 2024-04-12

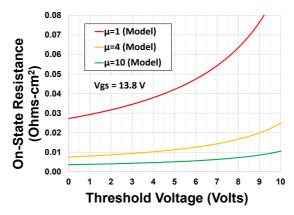
Online: 2024-08-26

Aivars J. Lelis<sup>1,a\*</sup>, Ronald Green, Jr.<sup>1,b</sup>, Daniel B. Habersat<sup>1,c</sup>, Damian P. Urciuoli<sup>1,d</sup> and Erik S. Schroen<sup>1,e</sup>

<sup>1</sup>U.S. Army DEVCOM Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, USA <sup>a</sup>aivars.j.lelis.civ@army.mil, <sup>b</sup>ronald.green39.civ@army.mil, <sup>c</sup>daniel.b.habersat.civ@army.mil, <sup>d</sup>damian.p.urciuoli.civ@army.mil, <sup>e</sup>erik.s.schroen.civ@army.mil

**Keywords:** Dynamic On-Resistance, Reliability, Threshold Voltage Instability, Trench MOSFET.

**Abstract.** Dynamic on-state resistance has been experimentally observed in all commercially-available SiC MOSFETs studied on the time scale of normal device operation, and can be explained by the presence of dynamic threshold-voltage instability. The magnitude of this dynamic on-state resistance varies from vendor to vendor, but in every case this magnitude generally corresponds to the magnitude of that device's threshold-voltage instability, as described by standard textbook equations—especially in the case of large threshold-voltage instabilities.


#### Introduction

This work presents very recent results investigating the direct relationship between the well-known dynamic instability of the threshold voltage ( $V_T$ ) [1, 2], and the newly-revealed dynamic on-state resistance ( $R_{DS-ON}$ ) [2, 3] in commercially-available SiC MOSFETs. Both planar-channel (Vendor M) and trench-geometry (Vendor T)—as defined in [2-4]—SiC power MOSFETs were characterized in terms of both dynamic  $R_{DS-ON}$  and, independently,  $V_T$  instability under similar gate-switching conditions comparable to standard power-switching operations, details of which are given elsewhere [2, 3]. The  $V_T$  instability data was then applied to standard semiconductor device equations relating  $V_T$  to the channel resistance, and the channel resistance in turn to the total resistance, resulting in a calculated expected change in  $R_{DS-ON}$  due to a change in  $V_T$ , which was then compared to the actual insitu measured change in  $R_{DS-ON}$ .

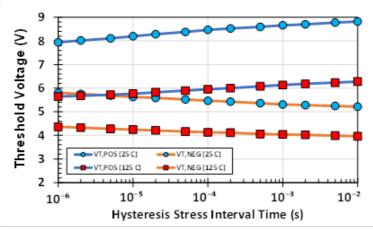
The specific channel resistance is given as

$$R_{CH} \cong \frac{L_{CH} \cdot Pitch}{\mu_{ch} \cdot C_{OX} \cdot (V_{GS} - V_T)}.$$
 (1)

wherein this specific channel resistance is a function of the channel length, cell pitch, inversion channel mobility ( $\mu_{ch}$ ), gate-oxide capacitance, and the difference between the applied gate-to-source voltage,  $V_{GS}$ , and  $V_T$ . The specific on-state resistance is the sum of all component resistances, normalized by the active area of the device.



**Fig. 1.** Theoretical curve for  $R_{DS-ON}$  versus  $V_T$  for a SiC MOSFET, as a function of channel mobility.

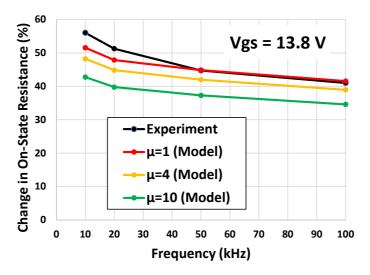

Fig. 1 shows the theoretical curve for  $R_{DS-ON}$  versus threshold voltage for a generic SiC MOSFET, as a function of  $\mu_{ch}$ , for the same  $V_{GS}$  that was applied when measuring  $R_{DS-ON}$  directly. Lower channel mobilities result in larger channel resistances, thus affecting the total resistance to a greater degree. In addition, Fig.1 shows that not only does total  $R_{DS-ON}$  increase with decreasing channel mobility, but more importantly, the slopes of the curves increase as well, resulting in larger changes in  $R_{DS-ON}$  for the same change in  $V_T$ —and these slopes increase even more for larger values of  $V_T$ .

#### **Results and Discussion**

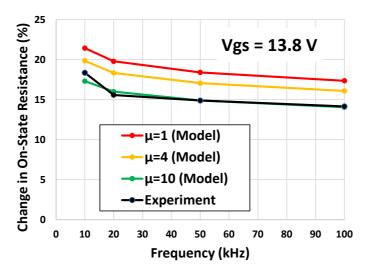
 $V_T$  hysteresis is a fundamental phenomenon occurring in all SiC MOSFETs. When subject to an alternating gate bias, near-interfacial oxide traps are alternately charged and neutralized, resulting in non-permanent drifts of  $V_T$  [1]. Although such dynamic  $V_T$  does not represent device degradation, if large enough, it may affect device (and therefore circuit) performance.

The magnitude of this dynamic variation in  $V_T$  depends on several factors, in particular the magnitude and polarity of the applied gate bias, and perhaps most importantly the duration in time that such bias is applied [1]. Naturally, the longer the applied bias, the greater the effect, although even gate biases applied on the time scales of normal device operation can result in noticeable  $V_T$  instabilities—but only if measured on a similar or faster time scale. Faster  $V_T$  measurements reveal more of the  $V_T$  instability that is present, but even the fastest measurements do not show the full extent of the  $V_T$  drift experienced by the device—although the effect of such drift is likely captured more readily by in-situ measurements of changes in the  $R_{DS-ON}$  [2, 3].

Fig. 2 shows the measured  $V_T$  instability of a previously unstressed DMOSFET from Vendor M, both at 25 and 125 °C. Both the low side (measured following the application of a negative gate bias for the indicated hysteresis stress interval time) and high side (measured following the application of a positive gate bias) of each  $V_T$  hysteresis envelope is plotted. As is commonly observed,  $V_T$  decreases with increasing temperature, and its  $V_T$  hysteresis also decreases [1]. Nonetheless, significant  $V_T$  instabilities are observed on the time scale of normal device operation. For example, at room temperature, the Vendor M device shows a  $V_T$  instability of 2.9 V for a hysteresis stress interval time of 50  $\mu$ s, which corresponds to an operating frequency of 10 kHz with a 50% duty cycle. At 125 °C, the  $V_T$  instability decreases to 1.7 V under the same bias-switching conditions.



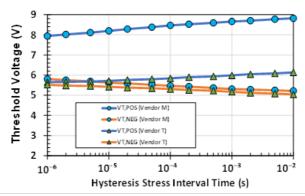

**Fig. 2.**  $V_T$  hysteresis data of a Vendor M planar SiC DMOSFET, for temperatures of 25 and 125 °C. Similar line colors indicate the same bias polarity of the hysteresis stress, and similar symbol shapes and colors indicate the same stress-and-measurement temperature.


Dynamic  $R_{DS-ON}$  was characterized (independently of  $V_T$  instability) for both planar and trench SiC MOSFETs, up to 100 kHz and up to 125 °C, under conditions comparable to standard power-switching operations. A standard gate driver with  $V_{GS}$  of +15 and -5 V was used to supply the on-state and off-state voltages of the MOSFETs, respectively. The change in on-state resistance,  $\Delta R_{DS-ON}$ , is defined as the difference between  $R_{DS-ON}$  measured at the beginning of each on-state interval and  $R_{DS-ON}$  measured at the end of the on-state interval immediately before the turn-off transition. The  $V_T$  instability data, such as that from Fig. 2, was then applied to (1) relating  $V_T$  to the channel resistance,

and the channel resistance in turn to the total resistance, resulting in a calculated expected change in  $R_{DS-ON}$  due to a change in  $V_T$  — which was then compared to the actual in-situ measured change in  $R_{DS-ON}$ .

This is seen in Figs. 3 and 4, which compare the calculated change in on-state resistance ( $\Delta R_{DS-ON}$ ) —for different assumed values of  $\mu_{ch}$  —based on the  $V_T$  instabilities ( $\Delta V_T$ ) shown in Fig. 2, with the actual in-situ measured values of  $\Delta R_{DS-ON}$  (labeled "Experiment")—at 25 °C and 125 °C, respectively. The magnitude of the dynamic  $R_{DS-ON}$  varies between 56% (at 10 kHz) and 42% (at 100 kHz) for the 25 °C case, whereas it is much smaller for the 125 °C case, varying between just 18% and 14%. This is unsurprising, given that the curves in Fig. 1 are much flatter for lower values of  $V_T$  (and which naturally vary less with smaller changes in  $V_T$ ). Even so, a good fit to the data also requires that  $\mu_{ch}$  increase with increasing temperature ( $\mu_{ch} = 1 \text{ cm}^2/\text{V} \cdot \text{s}$  at 25 °C;  $\mu_{ch} = 10 \text{ cm}^2/\text{V} \cdot \text{s}$  at 125 °C), consistent with what is reported on its data sheet.




**Fig. 3.** Results for Vendor M planar SiC DMOSFET at 25 °C. Comparison of experimentally measured change in  $R_{DS-ON}$ , as a function of switching frequency, with calculated changes in  $R_{DS-ON}$ —applying measured values of  $V_T$  instability (for  $V_T$  hysteresis measurements with hysteresis stress interval times corresponding to the switching frequency) to the theoretical curves from Fig. 1, as a function of assumed channel mobility.



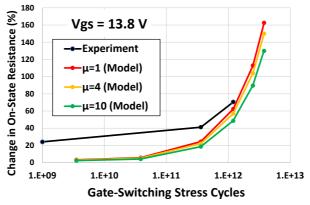

**Fig. 4.** Results for Vendor M planar SiC DMOSFET at 125 °C. Comparison of experimentally measured change in  $R_{DS-ON}$  with calculated changes in  $R_{DS-ON}$  —again applying the theoretical curves from Fig. 1 as a function of assumed channel mobility.

Fig. 5 compares the  $V_T$  instability of the same Vendor M device from Fig. 2 with a trench-geometry Vendor T device—both at 25 °C. The Vendor T device has a much, much smaller  $V_T$  instability. Fig. 6 plots the dynamic  $R_{DS-ON}$  of a Vendor T device as a function of gate- switching stress (GSS) cycles [3, 4], again comparing actual in-situ results ("Experiment") with calculated values based on measured  $V_T$  instability—all at a switching frequency of 10 kHZ (the GSS frequency was about 1 MHz). It is interesting to observe that before any increase in  $V_T$  instability due to GSS-induced degradation (due to negative bias overstress effects [2, 4]), there is a poor match between the measured  $\Delta R_{DS-ON}$  of about 22% and a calculated value well below 5%. As degradation occurs and  $\Delta V_T$  increases, the experimental and calculated values of  $\Delta R_{DS-ON}$  converge. For the very large  $V_T$  instabilities measured when GSS cycles exceed  $3 \times 10^{12}$ , the calculated  $\Delta R_{DS-ON}$  exceeds 160%.

In general, the standard textbook equations relating  $R_{DS-ON}$  and  $V_T$  were found to be consistent with our experimental results. The main difficulties appeared when measuring dynamic  $R_{DS-ON}$  with small  $V_T$  instabilities. In these cases, the measured values of dynamic  $R_{DS-ON}$  were much larger than what might reasonably be expected based on the  $V_T$  hysteresis measurements. One possible explanation is that even the fastest I-V measurements do not observe all the  $V_T$  instability that actually occurs [1, 3], yet is present and contributes to the dynamic  $R_{DS-ON}$  that is measured in-situ. On the other hand, large  $V_T$  instabilities, which would predict large variations in  $R_{DS-ON}$ , were confirmed by experiment. Expected variations in  $R_{DS-ON}$  with temperature were generally confirmed as well. Regardless of the cause of the large dynamic variability in  $V_T$ , a large  $V_T$  instability of more than a few volts can result in the presence of a significant dynamic variability of  $R_{DS-ON}$ . If such dynamic  $R_{DS-ON}$  effects are large enough, they may result in reduced device reliability due to an unanticipated increase in power dissipation [2, 3].



**Fig. 5.** *V<sub>T</sub>* hysteresis data at 25 °C for a Vendor M planar SiC DMOSFET, and for a Vendor T trench-geometry SiC MOSFET. Similar line colors indicate the same bias polarity of the hysteresis stress, and in this case similar symbol shapes and colors indicate the same device.



**Fig. 6.** Results for Vendor T trench-geometry SiC MOSFET at 25 °C. Comparison of experimentally measured change in  $R_{DS-ON}$ , as a function of total GSS cycles (with constant switching frequency of 10 kHz), with calculated changes in  $R_{DS-ON}$ —applying measured values of  $V_T$  instability (as a function of total GSS cycles with a fixed hysteresis interval time of 100  $\mu$ s) to the theoretical curves from Fig. 1, as a function of assumed channel mobility.

### **Summary**

We have observed dynamic  $R_{DS,ON}$  effects in power SiC MOSFETs with large threshold-voltage instabilities under normal gate-switching conditions, thus confirming the theoretical relationship between  $R_{DS,ON}$  and  $V_T$ . However, in cases where the measured  $V_T$  hysteresis was small (e.g., the unstressed Vendor T trench-geometry MOSFET at room temperature), the measured dynamic  $R_{DS,ON}$  was much larger than the theoretical value based on the measured dynamic  $V_T$ . One explanation for this discrepancy could be that even the fastest I-V measurements were still not able to capture all the  $V_T$  instability that occurred—in contrast to the in-situ dynamic  $R_{DS,ON}$  measurements.

Regardless of the cause of the large dynamic variability in  $V_T$ , a large  $V_T$  instability of more than a few volts (when measured using fast I-V) can result in the presence of a significant dynamic variability of  $R_{DS,ON}$ .

## References

- [1] A. J. Lelis, R. Green, D. B. Habersat, and M. El, Basic Mechanisms of Threshold-Voltage Instability and Implications for Reliability Testing of SiC MOSFETs, IEEE Trans. Elec. Dev., 62:2 (2015) 316-323.
- [2] A. J. Lelis, D. P. Urciuoli, E. S. Schroen, D. B. Habersat, and R. Green, Effect of Dynamic Threshold-Voltage Instability on Dynamic ON-State Resistance in SiC MOSFETs, IEEE Trans. Elec. Dev., 69:10 (2022) 5649-5655.
- [3] R. Green, A. J. Lelis, D. B. Habersat, D. P. Urciuoli, and E. S. Schroen, Dynamic On-State Resistance in SiC MOSFETs, 2023 IEEE IRPS (2023).
- [4] D. B. Habersat and A. J. Lelis, AC-Stress Degradation and Its Anneal in SiC MOSFETs, IEEE Trans. Elec. Dev., 69:9 (2022) 5068-5073.