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Abstract. Even though the descriptive definition of orientation is the same in both settings, the explicit

notation of a crystallographic orientation as (3 � 3) matrix in terms of Euler angles featured by the

popularMatlab toolboxMtex differs by an inversion from the quasi-standard notation dated back to the

early days of quantitative texture analysis championed by H.-J. Bunge. The origin of this discrepancy

is revealed by an enlightening view provided in algebraic terms of a change of basis. Understanding

the effect of inversion is instrumental to do proper computations with crystallographic orientations and

rotations, e.g. when multiplying with elements of a crystallographic symmetry group, and to compare

results of texture analyses accomplished in different settings.

Introduction

The documentation [1] of the popular Matlab [2] toolbox Mtex [3] states that “For historical reasons

MTEX defines orientations in a slightly different way than they have been defined by Bunge.” [4].

In fact, the descriptive definition of orientation is the same in both settings, but the rotation matrices

turning orientations operational are inverse of each other. This discrepancy does not originate from

history but frommathematics. In accordance with the general definition, orientation in texture analysis

refers to the rotational state of a coordinate system attached to a crystallite thought of a variable with

respect to a coordinate system attached to a polycrystalline sample thought of as fixed. When the

rotation numerically realizing an orientation is parametrized in terms of Euler angles, the discrepancy

of the rotation matrices originates from the erroneous derivation of the quasi-standard notation. It

seems to be affected by confusion in the maze of intrinsic vs. extrinsic notation, active vs. passive

rotation, rotation of vectors vs. transformation of a frame. If there is any historical association at all,

it is that the error originated decades before the existence of Mtex.

Unfortunately, this issue was not addressed in [3]; it is completed here. Following is a comprehen-

sive and mathematically detailed presentation of the derivation of rotation matrices corresponding to

orientations in terms of Euler angles. Publications contributing to the development of Mtex are listed

at [5].

Orientations and Their Corresponding Rotation Matrices in Terms of Euler Angles

Definition of orientation - rotation of frame.

An orientation g is generally defined as rotational displacement of two right-handed Cartesian coor-

dinate systems. It is described and quantified by the rotation that transforms the rotational state of one

system into the rotational state of the other [6]. In materials science and geology, the two coordinate

systems are usually Ksample = hx; y; zi attached to a polycrystalline sample, and Kcrystallite = ha;b; ci
attached to an individual crystallite such that the rotation g makes the sample coordinate system coin-

cide with the crystallite coordinate system, g : Ksample 7! Kcrystallite by virtue of g x = a; g y = b; g z =
c with unit vectors x; y; z and a;b; c, respectively, [7, p. 3], [8, p. 3], [9]. The orientation g describes

the rotational state of the coordinate system Kcrystallite with respect to the coordinate system Ksample.
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The matrix of the corresponding rotation is

M(g) =
x

y

z
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1A x
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: (1)

Its columns are the coordinates of the unit basis vectors a;b; cwith respect to the sample coordinate

system hx; y; zi, its rows are the coordinates of the unit basis vectors x; y; zwith respect to the crystallite
coordinate system ha;b; ci.

Accounting for crystallographic symmetries and considering symmetrically equivalent rotations

provide the notion of crystallographic orientation.

Change of basis - coordinate transform.

Let the unit vector v have coordinates (rx; ry; rz) with respect to Ksample, and coordinates (ha; hb; hc)
with respect to Kcrystallite such that

rx x+ ry y+ rz z = ha a+ hb b+ hc c; (2)

which is referred to as change of basis in linear algebra [10], [11, pp. 87–94]. If the crystallite

coordinate system Kcrystallite is rotationally displaced with respect to the sample coordinate system

Ksample by the orientation g, i.e., g : Ksample 7! Kcrystallite, the coordinate vectors h = (ha; hb; hc)
T and

r = (rx; ry; rz)
T are related as

g h = r; (3)

i.e., the orientation g transforms the crystallographic direction h into the sample direction r.

Since “The reader must realize that indiscriminate use of any matrix quoted in group theory can

lead into mortal trouble: One must know precisely on what basis and in what form the matrix is

supposed to operate.” [12, p. 69], here we discriminate rotation, e.g.0@xa xb xc

ya yb yc

za zb zc

1A0@1
0
0

1A
Ksample

=

0@a1
a2
a3

1A
Ksample

= a (4)

staying in the sample coordinate system, and transformation converting from the crystallite to the

sample coordinate system, e.g.0@xa xb xc

ya yb yc

za zb zc

1A0@1
0
0

1A
Kcrystallite

=

0@a1
a2
a3

1A
Ksample

= a: (5)

Given any two unit vectors h and r, Eq. 3 does not define a unique orientation g. The on-line

documentation [13] is erroneous.

Given a pair (h; r) of unit vectors, the set G(h; r) of all orientations satisfying Eq. 3 is called

fiber, fibers are the geodesics of SO(3) [14]. Fibers are crucial for the definition of the bi-directional
probability density function (“pole figures”) P (h; r) that the crystallographic direction h or any of

its symmetrically equivalents is converted to coincide with the sample direction r. Integration of a

function along the geodesics of its domain is referred to as Radon transform of the function [15].

Parametrization in terms of Euler angles: Intrinsic vs. extrinsic notation.

To parametrize the orientation g, Bunge [7, p. 5, Eq. (2.3)], [8, p. 4, Eq. (2.1)] uses the triplet of Euler
angles ('1; �; '2) according to the zx

0z00 or, equivalently, zxz convention:

• first rotation R('1; z) by '1 2 [0; 2�) about the sample z–axis,
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• second rotation R(�; x0) by � 2 [0; �] about the rotated sample x–axis,

• third rotation R('2; z
00) by '2 2 [0; 2�) about the twice rotated sample z–axis,

resulting in the notation

g('1; �; '2) = R('2; z
00) R(�; x0) R('1; z) (6)

as intrinsic rotation. Elaborating on

R('2; z
00) R(�; x0) R('1; z) =

R
�
'2; R

�
�;R('1; z) x

�
R('1; z) z

�
R
�
�;R('1; z) x

�
R('1; z) (7)

leads straightforward to the notation as extrinsic rotation

g('1; �; '2) = R('1; z) R(�; x) R('2; z) (8)

justifying the label zxz convention.

Matrices gMTEX('1; �; '2) and gBunge('1; �; '2).
Explicitly in terms of (3� 3) matrices of SO(3) it is

R('1; z) R(�; x) R('2; z)

=

0@ cos'1 � sin'1 0
sin'1 cos'1 0
0 0 1

1A0@ 1 0 0
0 cos� � sin�
0 sin� cos�

1A0@ cos'2 � sin'2 0
sin'2 cos'2 0
0 0 1

1A
=

0@ cos'1 cos'2 � sin'1 cos� sin'2 � cos'1 sin'2 � sin'1 cos� cos'2 sin'1 sin�
sin'1 cos'2 + cos'1 cos� sin'2 � sin'1 sin'2 + cos'1 cos� cos'2 � cos'1 sin�

sin� sin'2 sin� cos'2 cos�

1A(9)
= M('1; �; '2) = gMTEX (10)

as used in Mtex.

For whatever reason, Bunge [8, p. 21, Eq. (2.50)] set

gBunge('1; �; '2) =0@ cos'1 cos'2 � sin'1 cos� sin'2 sin'1 cos'2 + cos'1 cos� sin'2 sin� sin'2

� cos'1 sin'2 � sin'1 cos� cos'2 � sin'1 sin'2 + cos'1 cos� cos'2 sin� cos'2

sin'1 sin� � cos'1 sin� cos�

1A(11)
which results from taking the inverse of the right hand side of Eq. 8

gBunge('1; �; '2) =
�
R('1; z) R(�; x) R('2; z)

��1

= R(�'2; z) R(��; x) R(�'1; z): (12)

In fact, the matrices [8, p. 21, Eqs. 2.47, 2.48, 2.49] have been confused with the matrices of the three

elementary rotations according to the zxz convention , e.g. the matrix0@ cos'1 sin'1 0
� sin'1 cos'1 0

0 0 1

1A (13)

Solid State Phenomena Vol. 365 153



[8, p. 21, Eqs. 2.47] is mistaken as matrix of the rotation by '1 about z. However, it is either the

matrix of the rotation by�'1 about z or of the rotation by '1 about�z [12, p. 69, Eq. (14)]. Moreover,

Bunge [8] uses the same symbol g('1; �; '2) to denote both the orientation as defined informally in

terms of rotational displacement of coordinate systems in [8, p. 4, Eq. (2.1)] and its inverse as derived

as (3� 3) matrix of Euler angles in [8, p. 21, Eq. (2.50)]. Since [8, p. 21, Eq. (2.50)], this communi-

cation’s Eq. 11, is taken as operative formal definition of orientation throughout theory and practice

of crystallographic texture analysis by the Bunge school, their term orientation actually denotes the

rotational displacement of the sample coordinate systemKsample with respect to the crystallite coordi-

nate system Kcrystallite – just the opposite of Bunge’s initial definition [7, p. 3], [8, p. 3]). Referring to

the notation featured here, g�1
Bunge('1; �; '2) = gMTEX('1; �; '2), and of course gBunge('1; �; '2) r = h.

Exemplary implication of inversion.

The relationships gMTEX('1; �; '2)h = r and gBunge('1; �; '2) r = h, respectively, indicate an impli-

cation of the inversion. For any rotation � of some crystallographic symmetry group Gcs � SO(3),
gMTEX h = r implies gMTEX� h = e�r, i.e., multiplication gMTEX � from the right, where e� denotes

the conjugate of rotation �, i.e., the rotation e�(!; gMTEXn) by the same angle ! about the rotated axis

gMTEXn of rotation �(!; n). The axis n of rotation � 2 Gcs refers to the crystallite coordinate system

Kcrystallite, the rotated axis gMTEXn of the conjugate rotation e� refers to the sample coordinate system

Ksample. In the quasi-standard notation, gBunge r = h implies �gBunge r = �h, i.e., multiplication � gBunge
from the left.

Discussion

The same confusion of the three elementary Euler rotations and their inverses and, consequentially, of

g and g�1 occured in [16, p. 1059, Eqs. 9, 10, 11], and in [17, p. 730, Eq. (5), (6)], but it was supposedly

spread by the extended English translation [8] of [7]. Ever since, it has often been perpetuated, e.g.

in the textbooks [18, pp. 27-28] and [19, pp. 34-35, Eqs. 2.15, 2.16], where the elementary rotations

about the three axes of any Cartesian reference frame are defined as clockwise for non-negative angles

of rotations as opposed, i.e., inverse, to the standard definition as anti-clockwise [12, p. 69, Eq. (14)].

The result of their composition agrees of course with gBunge.
Surprisingly enough, the error to mistake the inverse orientation g�1 as orientation g happens

in [20] as well. Applying the zy0z00 [20, p. 4, Eqs. 1.4, 1.5, 1.6] or equivalently the zyz [20, p. 12]

convention, respectively, where the former refers to the intrinsic and the latter to the extrinsic notation,

the rotational displacement of the crystallite coordinate system Kcrystallite with respect to the sample

coordinate system Ksample is described by the sequence of elementary Euler rotations

g(�; �; 
) = R(�; z)R(�; y)R(
; z) (14)

=

 
cos� � sin� 0
sin� cos� 0
0 0 1

! 
cos� 0 sin�
0 1

� sin� 0 cos�

! 
cos 
 � sin 
 0
sin 
 cos 
 0
0 0 1

!
(15)

resulting in the orientation matrix [12, p. 69, Eqs. 14, 15].

M(g(�; �; 
)) =0@ cos� cos� cos 
 � sin� sin 
 � cos� cos� sin 
 � sin� cos 
 cos� sin�
sin� cos� cos 
 + cos� sin 
 � sin� cos� sin 
 + cos� cos 
 sin� sin�

� sin� cos 
 sin� sin 
 cos�

1A ; (16)

As before, the matrix M(g(�; �; 
)) realizes the transformation converting coordinate vectors from

the crystallite to the sample coordinate system,M(g(�; �; 
))hKcrystallite
= rKsample

, and of course
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M�1(g(�; �; 
))rKsample
= M(g�1(�; �; 
))rKsample

= hKcrystallite
. The confusion of g(�; �; 
) and its

inverse takes its course from [20, p. 7, Eq. (20)] onward with matrix A(gMVH(�; �; 
) (subscript mvh

by this author), the elements of which are defined in [20, p. 7, Eqs. 1.21, ... , 1.30] such that it agrees

withM�1(g(�; �; 
)) of Eq. 16; thus gMVH(�; �; 
) = g�1(�; �; 
) of Eq. 16. However, the confusion
does not seem like an insurmountable problem [21].

Conclusions

The definition of (crystallographic) orientation as rotational displacement of a Cartesian coordinate

system attached to an individual crystallite with respect to a Cartesian coordinate system fixed to

the polycrystalline sample is unique. Here, the lasting and annoying confusion about the explicit ex-

pression of the orientation of the crystallite coordinate system with respect to the sample coordinate

system has been traced back to the early days of quantitative crystallographic texture analysis. It seems

to originate to some extent in a rash definition of elementary rotations by Euler angles about conve-

nient axes or in the hasty exchange of an elementary rotation matrix by its inverse by getting signs

wrong. However, there may also be a common misconception that the matrix rotating the unit vectors

defining the Cartesian sample coordinate system onto the unit vectors defining the Cartesian crystallite

coordinate system converts for any given unit vector its coordinate vector with respect to the sample

coordinate system into the coordinate vector with respect to the crystallite coordinate system. In fact,

this conversion is realized by the inverse of the rotation matrix. Elaborating on the distinction be-

tween rotation of vectors and conversion of vectors between rotational displaced coordinate systems,

the confusion should be resolved now. Since the early mistake has been perpetuated it remains to note

that Bunge’s school of crystallographic texture analysis features orientation as rotational displacement

of the sample coordinate system with respect to the crysallite coordinate system.

After all, it is a matter of definition. The crystallographic texture community should be aware

that there is a quasi-standard parametrization in terms of Euler angles originating from an erroneous

derivation dating back to the early days of mathematization of crystallographic texture analysis, and a

proper parametrization originating in linear algabra and implemented in Mtex. They need to know the

difference to do proper computations involving crystallographic orientations and rotations in either

setting, and to compare results accomplished in different settings.
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