Papers by Author: Abel Cherouat

Paper TitlePage

Authors: Jie Zhang, Abel Cherouat, Houman Borouchaki
Abstract: Metal orthogonal cutting and blanking are two important forming processes which include material removing. During finite element analyzing, the nonlinear problems of boundary, material and geometry must be considered to obtain the accurate calculating results. In this paper, we present an advanced adaptive remeshing procedure which has the capacities to simulate material removing processes in three dimensions. The sizes of finite elements are well adapted to local conditions which have the high distributions of physical fields using priori and posteriori error estimates. Based on constraint Delaunay Kernel, the unit mesh strategy is proposed to improve the mesh quality. By optimizing of both mesh edges and mesh elements, the mesh shape qualities are strictly controlled as the regular tetrahedrons. In this paper, Johnson-cook model is considered to simulate the elastic-visco-plastical material behaviors. The damage initiation is also judged by Johnson-cook criterion. The finite elements which reach the criterion will be killed and the material removing processes finished step by step. The proposed adaptive remeshing scheme is well present using the simulation of metal orthogonal cutting, milling and blanking processes.
199
Authors: Abel Cherouat, Shi Jie Zhu, Houman Borouchaki, Xiao Lu Gong
Abstract: The compression characteristics of open-cell aluminum foams were experimentally and numerically investigated. It is found that the mechanical parameters, such as collapse stress and absorbed energy, are dependent on the porosity of aluminum foams material. During simulation of metal foam compression, the finite elements distort severely at the local regions with high gradient of physical field. The procedure integrates Explicit solver of Abaqus FEA, 3D Optiformmesher and Python script program transfer to execute step by step the incremental deformation of deformable body.
3
Authors: Shi Jie Zhu, Abel Cherouat, Houman Borouchaki, Xiao Lu Gong
Abstract: The compression characteristics of open-cell aluminum foams were experimentally and numerically investigated. It is found that the mechanical parameters, such as collapse stress and absorbed energy, are dependent on the porosity of aluminum foams. Three macroscopic models were chose to predict the compression behavior of open-cell foams. During simulation of metal foam compression, the finite elements distort severely at the local regions with high gradient of physical field such as stress, strain due to these problems. The procedure integrates Explicit solver of ABAQUS, OPTIFORM mesher and python script program transfer to execute step by step the incremental deformation process. At each step, the meshes are refined and coarsened automatically based on geometrical and physical error estimations; the physical fields are transferred from old to the new one using advanced algorithm.
17
Authors: Jie Zhang, Abel Cherouat, Houman Borouchaki
Abstract: As a material removal process, metal milling process involves large geometry deformation, material thermo-visco-plastic flow coupled with damage and complex contact-friction problems. During simulation of metal milling, the finite elements distort severely at the local regions with high gradient of physical field such as stress, strain and temperature due to these problems. This paper presents numerical adaptive remeshing procedure dedicated to metal milling process. The procedure integrates Explicit solver of ABAQUS, OPTIFORM mesher and python script program transfer to execute step by step the incremental milling process. At each step, the meshes are refined and coarsened automatically based on geometrical and physical error estimations; the physical fields are transferred (point to point) from old to the new one using advanced algorithm. Johnson-cook material model is used to simulate the material plastic flow with ductile damage. Some numerical results are given to demonstrate the efficiency of the proposed procedure.
11
Authors: M.T. Nasri, Slimani Faouzi, Mohammed Ali Rezgui, M. Ayadi, Abel Cherouat
Abstract: In this paper, a new procedure for the identification of constitutive elastoplastic models coupled with an isotropic damage variable under large strains is presented. It is a statistical approach used for experimental characterization and identification based on a design of experiments of numerical simulations of mechanical characterization tests. The parameters for a reference material are determined by multiple linear regression as a function of shape indices.The material of reference is mild steel E24; it was characterized in a series of tensile tests of thin plate specimens. The Swift hardening law coupled with an isotropic damage variable that was identified by introducing in the established formulations shape indexes extracted from the experimental tension/elongation curves.The number of simulations required for the identification of the parameters of the reference material is roughly 18% of the number required by the inverse method (simplex).
71
Authors: Abel Cherouat, Laurence Giraud-Moreau, Houman Borouchaki
Abstract: This paper presents an advanced numerical methodology which aims to improve virtually any metal forming processes. It is based on elastoplastic constitutive equations accounting for non-linear mixed isotropic and kinematic hardening “strongly” coupled with isotropic ductile damage. During simulation of metal forming processes, where large plastic deformations with ductile damage occur, severe mesh distorsion takes place after a finite number of incremental steps. Hence an automatic mesh generation with remeshing capabilities is essential to carry out the finite element analysis. Besides, when damage is taken into account a kill element procedure is needed to eliminate the fully damaged elements in order to simulate the growth of macroscopic cracks. The necessary steps to remesh a damaged structure in finite element simulation of forming processes including damage occurrence (initiation and growth) are given. An important part of this procedure is constituted by geometrical and physical error estimates. The meshing and remeshing procedures are automatic and are implemented in a computational finite element analysis package (ABAQUS/Explicit solver using the Vumat user subroutine). Some numerical results are presented to show the capability of the proposed procedure to predict the damage initiation and growth during the metal forming processes.
27
Authors: Laurence Giraud-Moreau, Abel Cherouat, Jie Zhang, Houman Borouchaki
Abstract: Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.
1375
Authors: Laurence Giraud-Moreau, Abel Cherouat, Houman Borouchaki
Abstract: As soon as it is question of modelling the follow-up of a geometry during an operation of forming process, the difficulties of meshing and remeshing are often emphases. If the part is situated between rigid tools (case of the deep drawing), in the problems of remeshing are also added difficulties on the management of the contact between the parts. In this case, the deformations are caused by the contact with the tools whose geometry are fixed. The piece must take the shape of the tool geometries during the deformation. In this paper, we present a method coupling an adaptive remeshing strategy and a technique of projection on the tool. The remeshing is based on refinement and coarsening procedures. The projection of the new nodes on the tool allows keeping the contact between the part and the tools. Numerical examples show the efficiency of the method.
1
Authors: Olivier Sicot, X.L. Gong, Xiao Jing Gong, Abel Cherouat, Jian Lu
Abstract: The objective of this paper is to study the influence of residual stresses due to fabrication conditions on the thermomechanical behavior of carbon/epoxy laminate structures (cross ply). These studied laminates have undergone various cycles of thermal aging. The addition of a post-cure cycle after the end of the initial cycle makes it possible to reduce the residual stresses level. The incremental hole-drilling method is used to measure the residual strain in the laminates. These measured strains and the numerical calibration coefficients obtained by the finite element method allow to calculating the residual stress distribution in composite depth. The obtained results show that heat treatments of composite structures do not lead to an important reduction the initial residual stress due the fabrication conditions.
813
Authors: Guillaume Montay, Olivier Sicot, X.L. Gong, Abel Cherouat, Jian Lu
Abstract: Residual stresses play an important role on the mechanical behavior of composite laminate. The development of new methods to determine the residual stresses gradient within the laminates is necessary. This article presents the adaptation of the compliance method in the case of composite laminates carbon/epoxy [02/902]s. The incremental drilling of a constant width groove allows for each increment to measure the strains (using strain gages) and displacements (using an optical device) of particularly points of the structure surface. These experimental data are compared with results given by a finite elements simulation. This comparison allows to raise the residual stresses in the composite laminate.
533
Showing 1 to 10 of 27 Paper Titles