Papers by Author: Am Kee Kim

Paper TitlePage

Authors: Am Kee Kim, Seong Sik Cheon, Md Anwarul Hasan, Seong Seock Cho
Authors: Am Kee Kim, Md Anwarul Hasan, Hak Joo Lee, Seong Seock Cho
Abstract: Nanoindentation test has been performed to characterize the mechanical properties of aluminium alloy foam cell wall. Two of the mechanical properties: hardness and Young’s modulus of cell wall material were evaluated using the stiffness of contact during both loading and unloading. Properties obtained from unloading stiffness were in better agreement with the conventional test result than those obtained from loading stiffness. The finite element analysis using nonlinear finite element code ABAQUS was performed to characterize the yield strength and the stress-strain curve of the cell wall material of the foam. Properties of foam cell wall material were found to be substantially different from the properties of the material before foaming. The methodology used in this paper can be effectively used to characterize the mechanical properties of cell wall of any cellular material.
Authors: Seung Hoon Nahm, Jeong Min Kim, Jong Seo Park, Kwang Min Yu, Dong Kyun Kim, Am Kee Kim, Dong Jin Kim
Authors: Seung Hoon Nahm, Jong Seo Park, In Hyun Chung, Kwon Sang Ryu, Am Kee Kim
Abstract: Many researchers have been interested in the nondestructive measurement methods for examining the microstructural changes and components damage in order to assure the safe operation of steel structure. It has been recognized that the techniques based on magnetic measurement offered a great potential because of high susceptibility to the change of several metallurgical factors. In this study, the effect of isothermal heat treatments, which simulate the microstructural changes observed in reactor vessel material at the service temperature, on the magnetic properties was investigated. 2.25Cr-1Mo steel specimens with several different kinds of aging were prepared by an isothermal heat treatment at three different temperature levels. Magnetic property such as coercive force was measured. The coercive force at room temperature monotonously increased with the extent of degradation of the material. The correlation between the measured magnetic property and the mechanical properties was studied. In addition, the applicability of magnetic properties measurements to the evaluation for toughness degradation of reactor vessel was discussed.
Authors: Am Kee Kim, Yong Du Jun, Kum Bae Lee, Seung Hoon Nahm
Authors: Hoon Sik Jang, Sung Hwan Kwon, Am Kee Kim, Seung Hoon Nahm
Abstract: We have attempted to observe straining responses of an individual multi-walled carbon nanotube (MWNT) by performing an in-situ tensile testing inside scanning electron microscope (SEM). The both ends of an individual MWNT was attached on the rigid support and the tip of the force sensor using electron beam and was elongated by a nano-manipulator. The nano-manipulator was automatically controlled by personal computer. Linear deformation and fracture behaviors of MWNT were successfully observed and its force-displacement curve was also measured from the bending stiffness and displacement of the force sensor and manipulator. The tensile properties of individual MWNT were evaluated from the tensile test results.
Authors: Am Kee Kim, Md Anwarul Hasan, Seong Sick Choen, Hak Joo Lee
Abstract: Nanoindentation data measured on the cell-wall of Al-alloy foams were analyzed to obtain the material properties of the cell wall. Using the obtained material properties, stress-strain curve of the foam in uniaxial compression was constructed by finite element modeling. The model developed for the analysis was a multiple cell model which utilized the unit cells as the basic building block of the foam. Both the in-plane and through-thickness density variations of the foam were considered in the model. The through-thickness density variation which is a function of casting or foaming process was represented using different densities for different foam layers, while the in-plane density variation which arises from internal defects (such as porosities, second phase particle, inclusions etc.) was assumed to follow a statistical probability distribution of Gaussian type. Uniaxial compression test was performed and the finite element analysis result was compared with the experimental result. The numerical model used in the study overpredicted the crushing strength of foams indicating that the model needs to be improved for predicting the real foam properties with better accuracy.
Showing 1 to 7 of 7 Paper Titles