Papers by Author: Antonio González-Herrera

Paper TitlePage

Authors: Antonio González-Herrera, Daniel Camas, J. Garcia-Manrique
Abstract: Since long time, fatigue crack closure has been studied by means of finite element models. Initially by bi-dimensional models and recently, due to the higher computational capabilities, the use of three-dimensional models has been extended, providing a wider comprehension of the problem. Starting with the methodology used for 2D cases, a specific methodology for 3D models has been developed. Key parameters affecting the model have been analyzed and recommendations have been established. The numerical accuracy is evaluated in terms of crack closure and opening values. They main issues studied are the material behaviour, the loading cycles and crack growth scheme, the contact simulation, the meshing and the element size at the crack tip and along the thickness, the plastic wake computed and the opening and closure definition considered. This paper summarises the main learning and recommendations from the latest numerical modelling experience of the authors.
Authors: Belen Moreno, Pablo Lopez-Crespo, Antonio González-Herrera, Jose Zapatero
Abstract: Many mechanical components are subjected to multiaxial fatigue. These conditions are typically coming from external loads, the geometry of the component and/or residual stresses. However the majority of experimental data available in the literature are focused on the simpler uni-axial fatigue problem. The present work describes a series of experimental tests conducted to characterise in a comprehensive way the multiaxial behaviour of a ST52-3N structural steel. First, the monotonic properties of the steel were obtained experimentally. Then cyclic properties were also measured both in the longitudinal and torsional axes. Finally another series of tests were carried out to study the multiaxial response of the material. Both in-phase (proportional) and out-of-phase (non proportional) loadings were employed, thus providing a complete database for improving current models which describe the multiaxial behaviour of materials.
Authors: J. Garcia-Manrique, Daniel Camas, A. Lima-Rodriguez, Antonio González-Herrera
Abstract: Recent studies have allowed us to identify a narrow region of the thickness of the crack front in fracture problems that presents interesting characteristics for the numerical-experimental correlation. Taking the three-dimensional distribution of the stress intensity factor (K) as a reference, we observe how it remains invariant and independent of the main factors influencing this type of analysis. This article presents a summary of how to identify this point through the numerical simulation of the problem and its relationship with parameters such as thickness, load level or angle of curvature. The simulations are carried out with the ANSYS software in an aluminium CT specimen subjected to a fracture loading process in mode I.
Authors: Pablo Lopez-Crespo, Daniel Camas, Antonio González-Herrera, J.R. Yates, Eann A Patterson, Jose Zapatero
Abstract: The fatigue life of metallic materials is strongly influenced by crack closure effects. Finite element (FE) methods allow the study of crack closure with great detail and can provide valuable information about phenomena occurring in the bulk of the material. In this work the distribution of stresses through the thickness of a cracked specimen has been studied using 3D FE simulations. It was found that the transition between the interior of the specimen (plane strain) and the surface (plane stress) differs from that predicted by 2D plane stress models. In addition, an attempt is presented to experimentally validate the results at the surface level. For this purpose full-field image correlation technique was utilized. This allowed direct comparison between the displacement field predicted by the numerical simulations and the experimental results measured by digital image correlation.
Authors: Daniel Camas, Pablo Lopez-Crespo, Antonio González-Herrera
Abstract: This paper presents a numerical study of the influence of the load level and the crack front curvature on the plastic zone in the area close to the crack front. The aim of the work is to determine the influence of these parameters on fatigue crack closure. For this, a CT aluminum specimen has been modelled tri-dimensionally and several finite elements calculations have been made considering a large combination of the variables under consideration.
Authors: Antonio González-Herrera, J. Garcia-Manrique, A. Cordero, Jose Zapatero
Abstract: This paper focuses on the study of the plastic zone in fatigue crack closure based on the results obtained by means of 3D Finite Element Analysis (FEA). These results show the crack behavior through the thickness. The plastic zone is visualized and quantified. It does not correspond to the classical shape. The plastic zone in the interior surface is similar to those obtained in 2D plane strain conditions and a reduced effect of closure is observed. However, close to the external surface, 2D plane stress results are not reproduced, the plastic zone size is smaller and an important change is observed. This transition is developed in a thin external portion of the specimen and it can only be captured if a fine mesh of the thickness is done.
Showing 1 to 6 of 6 Paper Titles