Papers by Author: Chuan Bai Yu

Paper TitlePage

Authors: Chuan Bai Yu, Chun Wei
Abstract: Reinforced phenol formaldehyde resin (PF) matrix nanocomposites with different nano-SiO2 were fabricated with two-roll compounding and compression molding technology. The mechanical and tribological behaviors of the reinforced composites were studied. The friction and wear experiments were tested on a constant speed machine (D-SM). The impact and flexural strength of nanocomposites were increased by the addition of various types of SiO2, but the flexural modulus was decreased. The effects of the addition of various types of SiO2 on tribological properties of the composites were explored in this study. The results showed that the coefficient of friction of the composites increased, while the wear rate values decreased at various temperatures. Microstructure of worn surface of the tested composites was observed by scanning electronic microscope (SEM) and the wear mechanism of the reinforced composites was studied.
Authors: Chuan Bai Yu, Chun Wei, Dong Ming Pan
Abstract: The objective of this research was to investigate thermal stability and dynamic mechanical behavior of nano-SiO2/phenol formaldehyde resin (PF) nanocomposites with various nano-SiO2 at 2 wt% loading content. The nano-SiO2/PF nanocomposites were fabricated by two-roll compounding and compression molding technology. The storage modulus (E′) at the starting point of 50 was increased by adding various nano-SiO2 into PF matrix. The E′ of the nanocomposite with only 2 wt% of SiO2 synthesized under ultrasonic irradiation (U-SiO2) was 2 times higher than that of the control PF. Thermal expansion and the coefficient of thermal expansion of nano-SiO2 loaded nanocomposites were lower than that of the control PF in the range of 100–200 and 200–250 . Thermogravimetric analysis demonstrated that the thermal stability of nanocomposites was evidently enhanced. In comparison, U-SiO2 reinforced nanocomposites showed higher thermal properties than those reinforced by mesoporous silica (SBA-15) and SiO2 synthesized by stirring (S-SiO2).
Showing 1 to 2 of 2 Paper Titles