Papers by Author: Chun An Tang

Paper TitlePage

Authors: Zheng Zhao Liang, Chun An Tang, De Shen Zhao, Yong Bin Zhang, Tao Xu, Hou Quan Zhang
Abstract: A newly developed numerical code MFPA3D is applied to simulate the progressive damage and failure process of laminated cylindrical composite shell. Heterogeneities in meso-scale are taken into account by randomly distributing the material properties throughout the model by following a Weibull statistical distribution. The cylindrical composite shell is discretized into 3-D block elements with the fixed size and is subjected to a lateral compressive loading, applied with a constant displacement control manner. The numerical simulation results show that not only the process of crack initiation, propagation and coalescence but also the failure process can be numerically obtained in three dimensional. The MFPA3D modeling demonstrates that the code can simulate non-linear behavior of brittle materials with a simple mesoscopic constitutive law with a strength and elastic modulus reduction of the weaken elements.
Authors: S.K. Au, Shan Yong Wang, K.C. Lam, Chun An Tang
Abstract: Disastrous rock slope failures have been posing a hazard to people’s lives and causing enormous economic losses worldwide. Numerical simulation of rock slope failure can lead to improve the degree of understand of such phenomenon so as to predict and avoid the occurrence of these disastrous events. In order to simulate the global behaviors of rock slope failure under the high seepage pressure and the local behaviors of the occurrence of hydraulic fracture in the pre-existing rock joints effectively, a powerful finite element tools F-RFPA2D, is adopted. The simulation takes into account of the growth of existing fractures and the initiation of new fractures under various of hydraulic pressure in different heterogeneities medium. The behavior of fluid flow and damage evolution, and their coupling action are studied in small specimens that are subjected to both hydraulic and biaxial compressive loadings. The influence of the ratio (the initial horizontal stress to the initial vertical stress) and the distance between the two existing cracks on the fracture propagation behaviors are investigated. Moreover, based on the fundamental study of hydraulic fracture, the progressive failure of rock slope under the influence of the increase in hydraulic pressure was also studied in the paper.
Authors: Shan Yong Wang, S.K. Au, K.C. Lam, Chun An Tang
Abstract: Based on cusp-type catastrophe theory, a sample rock-rock (hypocenter surrounding the rock) model for studying the pillar rockburst mechanism is presented in this paper. It is expounded theoretically that the stiffness ratio, K, of the roof and floor to the pillar plays an important role in the outbreak of instability. Using a newly developed numerical code, RFPA2D, the progressive failure process and associated microseismic behavior of the twin rock samples are simulated. The numerically simulated results also confirm that a soft roof and floor promotes an unstable failure or collapse of pillars. Additionally, the simulated results reproduced the deformation jump and the energy release that occur during a pillar rockburst. It is demonstrated that the proposed model properly simulates the pillar failure process.
Authors: Zhu Jie He, Tao Xu, Chun An Tang
Abstract: In this paper, the bond length effect of FRP plate on bonding performance and the distribution patterns of the stress in FRP plate was investigated using 3D Realistic Failure Process Analysis (RFPA3D) code to study the debonding mechanism of the FRP plate bonded to concrete block. Numerical simulations show that the progressive debonding of FRP plate bonded to concrete occurs in the concrete on the condition of different bond lengths can be divided into four stages: elastic-deformation stage, elastic-softening stage, elastic-softening-debonding stage and softening-debonding stage. It is also show that the interfacial bond strength and the global slip of FRP-to-concrete increase with the increase of the bond length.
Authors: Shu Hong Wang, Chun An Tang, Wan Cheng Zhu, Kai Zhang
Authors: De Shen Zhao, Tao Xu, Chun An Tang, Hou Quan Zhang, Zheng Zhao Liang
Abstract: Using a newly-developed Material Failure Process Analysis code (MFPA3D), the micro-fracturing process and the avalanche behavior characterization of brittle disordered materials such as rock or concrete is numerically studied under uniaxial compression and tension. It is found that, due to the heterogeneity of the disordered material, there is an avalanche behavior in the microcrack coalescence process. Meanwhile, a hierarchy of avalanche events also numerically observed though a study of numerically obtained acoustic emissions or seismic events. Numerical simulations indicate that macro-crack nucleation starts well before the peak stress is reached and the crack propagation and coalescence can be traced, which can be taken as a precursory to predict the macro-fracture of the brittle disordered materials. In addition, the numerically obtained results also reveal the presence of residual strength in the post-peak region and the resemblance in the stress-strain curves between uniaxial compression and tension.
Authors: P. Lin, R.H.C. Wong, Yu Fang Fu, Chun An Tang, W.Y. Zhou
Authors: Qing Lei Yu, Chun An Tang, Zheng Zhao Liang, Shi Bin Tang
Abstract: This paper presents a new meso-mechanical analysis method of rock failure. The actual inhomogeneity of rock at meso-scale level is represented by processing the image of rock section and incorporated into Realistic Failure Process Analysis code (abbreviated as RFPA2D). Here, this numerical tool is employed to study the fracture phenomena of granite sample considering the interface strength between mineral grains. Numerical results show that interface strength has significant influence on the strength of sample and its failure mode. The larger the interface strength is, the more brittle rock samples become and the strength is bigger. With the interface strength increasing, failure mode gradually varies from intergranular frature to transgranular fracture.
Authors: Wan Cheng Zhu, Jin Chao Duan, Chun An Tang, Shan Yong Wang
Abstract: Rock and concrete are typical heterogeneous material that the meso-scale heterogeneity may have a significant effect on their macro-scale mechanical responses. In this work, a digital image-based (DIB) technique is employed to characterize and quantify the heterogeneity of concrete, and the obtained data is directly imported into a numerical code named RFPA (Rock Failure Process Analysis) to study the effect of heterogeneity on the failure process of concrete. The upgraded RFPA is capable to simulate the progressive failure of brittle materials such as rock and concrete, representing both the growth of existing fractures and the formation of new fractures, obviating the need to identify crack tips and their interaction explicitly. The simulated results are in reasonable agreement with experimental measurements and phenomenological observations reported in previous studies.
Authors: Lian Chong Li, Chun An Tang, P.A. Lindqvist
Abstract: Using RFPA code, analyses have been carried out to investigate the stability of a rock pillar in a experiment for nuclear waste repositories, the numerically obtained stress field, temperature distribution, failure pattern of the pillar rock and associated AE events are all agree well with the in-situ data. Minor fracture initiation may take place in the vicinity of the boreholes after heating. Heating induces minor spalling at central pillar wall for 0.5 m sections below the tunnel floor, but the area of spalling is found to be limited. The core of the pillar remains intact for stress conditions corresponding to 120 days of heating which not only prove that the proposed technique provides a powerfully alternative and effective approach for the study on thermal-mechanical-damage coupling mechanism but also provide meaningful guides for the experiment design and associated applications.
Showing 1 to 10 of 55 Paper Titles