Papers by Author: D. Verdera

Paper TitlePage

Authors: P. Rey, D. Gesto, J.A. del Valle, D. Verdera, Oscar A. Ruano
Abstract: Friction Stir Processing (FSP) has attracted much interest as a tool for refining grain size and achieving high angle boundary misorientation in magnesium alloys. These characteristics have a great influence in key engineered properties such as strength and ductility, which could be markedly improved by means of this technique. The main objective of this work is to study the microstructural modifications produced when FSP is applied to homogenized cast AZ91 and wrought AZ61 magnesium alloys. Several attempts were made for achieving a homogenous microstructure without defects and enhancing the refinement of the grain size in the stir zone. It was revealed that is of great importance to break the initial microstructure, of coarse grains unfavourably oriented for deformation, in order to facilitate the process, particularly in the case of cast AZ91 alloy. It is highlighted that, after breaking up the initial microstructure, is possible to process the material, in subsequent passes, Furthermore, the use of different backing materials as heat sink and a previous heating treatment of the sample were evaluated. Changing the backing plate can improve more the reduction of the grain size during a second pass. Using a copper plate instead of a steel one can promote a refinement up to 700 nm in AZ91 and 1 μm in AZ61. A coolant agent can be used for inhibiting the grain growth causing a little more reduction of the grain size.
Authors: J.A. del Valle, P. Rey, D. Gesto, D. Verdera, Oscar A. Ruano
Abstract: The effect of friction stir processing (FSP), on the microstructure and mechanical properties of a magnesium alloy AZ61 has been analyzed. This is a widely used wrought magnesium alloy provided in the form of rolled and annealed sheets with a grain size of 45 μm. The FSP was performed with an adequate cooling device in order to increase the heat extraction and reduce the processing temperature. The final microstructure showed a noticeable grain size refinement down to values close to 1.8 μm and an important change in texture. The change in texture favors basal slip during tensile testing leading to an increase of ductility and a decrease in yield stress. The stability of the grain size and the creep behavior at high temperatures were investigated. The optimum conditions for superplastic forming were determined; however, the presence of a large amount of cavities precludes the achievement of high superplastic elongations. Additionally, these results are compared with those obtained by severe hot rolling.
Authors: R. Beygi, Mohsen Kazeminezhad, A.H. Kokabi, S. Mohammad Javad Alvani, D. Verdera, Altino Loureiro
Abstract: In this study friction stir welding of Al-Cu laminated composites were carried out by two different tool geometries. Welding procedure was carried out from both sides of Al and Cu. Analyzing cross section of welds showed that different contact conditions between shoulder and material, offers different material flow behavior which is dependent on the tool geometry. SEM analyses showed that mixing of materials in nugget region is more pronounced in the advancing side. Also XRD results indicated that welding from Cu side, leads to intermetallic formation in mixed regions.
Showing 1 to 3 of 3 Paper Titles