Papers by Author: David Wexler

Paper TitlePage

Authors: M. Ahmadian, M. Reid, Rian Dippenaar, Tara Chandra, David Wexler, Andrzej Calka
Abstract: The densification behavior of WC composites based on iron aluminide binder was investigated using laser scanning confocal mi¬croscopy (LSCM). Doped Fe60Al40 alloys with boron levels ranging from 0 to 0.1 wt% were used as the aluminide binders. The aluminide binders were prepared using controlled atmosphere ring grinding and then blended with WC powder. The composite powder compacted in an alumina crucible and held in a platinum holder in the confocal microscope. The temperature increased from ambient temperature up to 1500 °C under high purity argon. The presence of boron was found to facilitate compaction of the composites and improve the wetting between WC and FeAl binder during liquid phase sintering. Increasing the amount of boron in the binder resulted in the melting of binder at lower temperature and increasing of the compacting of the intermetallic tungsten carbide composites.
Authors: Chandrahas Rathod, David Wexler, Vladimir Luzin, Paul Boyd, Manicka Dhanasekar
Abstract: Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.
Authors: M. Ahmadian, Tara Chandra, David Wexler, Andrzej Calka
Abstract: The effect of boron on the WC morphology and on the grain size of binders in sub micron WC composites containing Fe60Al40 and Ni3Al binders was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composites were prepared under uniaxial hot pressing of milled powder samples at 1500 °C in inert argon atmosphere. Doped aluminides with boron levels ranging from 0 to 0.1 wt% were used as the binders. It was found that the microstructural characteristics of boron doped aluminide WC composites were similar to those of hot pressed WC-Co and commercial grade WC-10wt%Co (H10F) hardmetals. The contiguity of WC particles (WC/WC contact) and the grain sizes of aluminides decreased and the extent of faceting of tungsten carbide increased in the aluminide tungsten carbide composites in presence of boron.
Authors: Andrzej Calka, David Wexler, Dariusz Oleszak, J. Bystrzycki
Abstract: In this paper both electric discharge assisted milling [1, 2] and conventional mechanosynthesis techniques were applied to investigate the effects of milling conditions on the fracture and agglomeration of amorphous CoSiB ribbons produced by planar flow casting. The effect of spark energy on particle shape and size produced by discharge milling was studied. Conventional milling in inert atmosphere for extended periods generally leads to the formation of porous powder particle aggregates, each particle comprised of small amorphous or, after extended milling times, nanocrystalline elements. The mechanism of agglomeration was believed to originate from repeated fracture, deformation and cold welding of individual ribbon elements. In contrast to conventional milling, spark discharge milling was found to induce the formation of predominantly sub-micron single particles of amorphous powder. The morphology of individual particles varied from sub-micron irregular shaped particles to remelted particles, depending on selection of vibrational amplitude during discharge. For high vibrational amplitudes and high energy input a wider range of particles as produced. These included sub-micron particles, remelted particles and welded agglomerates, and nano-sized particles produced as a fume and collected during discharge milling under flowing argon. These results combined with observations that most re-melted particles produced by discharge milling were also amorphous confirmed that extremely high heating and cooling rates are associated with discharge milling of metals. They also confirm the potential of electrical discharge milling as a new route for the synthesis of ultrafine and nanosized powder particles from amorphous ribbon, for possible processing into 3-D shapes.
Authors: David Wexler, A. Fenwick, Andrzej Calka
Showing 1 to 10 of 29 Paper Titles