Papers by Author: Fumiyoshi Minami

Paper TitlePage

Authors: Yasuhito Takashima, Mitsuru Ohata, Fumiyoshi Minami
Abstract: Charpy impact toughness values show large statistical scatter, particularly in the ductile-to-brittle transition temperature (DBTT) range. Although the statistical distribution of Charpy absorbed energy has not been clarified, critical values of the stress intensity factor, J-integral and crack-tip opening displacement (CTOD) at brittle fracture generally show the Weibull distribution with two or three parameters. This study proposes a brittle fracture model, based on the weakest link theory, for evaluating the scatter in Charpy absorbed energy KV. The numerical results show that the amplitude of the opening stress fields ahead of the V-notch at varying amounts of KV are uniquely characterized as the square of the applied load. With these numerical results, the Weibull shape parameter of the statistical distribution of KV is almost equal to 2. The proposed statistical model is verified through experimental results. It is found that the statistical distribution of KV is characterized by a two-parameter Weibull distribution with the shape parameter of 2 under the condition of pure brittle fracture.
Authors: Shusaku Takagi, Satoshi Terasaki, Kaneaki Tsuzaki, Tadanobu Inoue, Fumiyoshi Minami
Abstract: A new method for evaluating the hydrogen embrittlement (HE) susceptibility of ultra high strength steel was studied in order to propose a new method for assessing the delayed fracture property. The material used was 1400MPa tempered martensitic steel with the chemical composition 0.40C-0.24Si-0.81Mn-1.03Cr-0.16Mo(mass%). The local approach originally used for evaluating the brittle fracture property was applied to HE susceptibility assessment after modifying the method to include the effect of hydrogen content. Critical HE data used in the modified local approach was obtained by a stepwise test in which alternating processes of stress increase and stress holding were repeated until the specimen fractured. The specimen used in the stepwise test was 10 mm in diameter and the stress concentration factor was 4.9. Assessment of HE susceptibility for specimens with other dimensions entailed the use of a critical hydrogen content for failure, Hc, representing the maximum hydrogen content among the unfractured specimens in the HE test with constant loading. Matters to be noted for obtaining the material parameters are discussed.
Authors: Fumiyoshi Minami
Abstract: This paper describes the fracture assessment standards developed in Japan, where the Weibull stress is implemented to correct the CTOD toughness for constraint loss in structural components. ISO 27306 and WES 2808 (Japan Welding Engineering Society Standard) are presented. Discussion is given on the effects of strength mismatch and residual stress in welds.
Authors: Fumiyoshi Minami
Abstract: This paper presents a new fracture assessment method, IST method developed as ISO 27306. The IST method implements an equivalent CTOD ratio, β, for the CTOD toughness correction for constraint loss in structural components. Using β, the standard fracture toughness specimen and structural components are linked at the same level of the Weibull stress. This paper extends the equivalent CTOD concept to weld components. Effects of the weld strength mismatch and residual stress on β are discussed. It is shown on the failure assessment diagram (FAD) that the CTOD toughness correction with β leads to accurate fracture assessments of weld panels, whereas the conventional procedure gives much conservative results.
Authors: Yasuhito Takashima, Mitsuru Ohata, Fumiyoshi Minami
Authors: Hiroshi Shimanuki, Fumiyoshi Minami, Mitsuru Ohata
Authors: Yoichi Yamashita, Fumiyoshi Minami
Abstract: This paper studied the assessment method for welding residual stress effects and constraint loss effects on brittle fracture of structural component subjected to membrane stress. The methodology of CTOD fracture toughness correction for welded joints is proposed from lower to upper ductile-brittle transition temperature region. The methodology is based on the tensile plastic zone size criterion and the equivalent CTOD ratio derived from the Weibull stress criterion. It has been found that the proposed methodology has given the reasonable fracture assessment results.
Authors: Mitsuru Ohata, Takuya Fukahori, Fumiyoshi Minami
Abstract: This study pays attention to reveal the material properties that control resistance curve for ductile crack growth (CTOD-R curve) on the basis of the mechanism for ductile crack growth, so that the R-curve could be numerically predicted only from those properties. The crack growth tests using 3-point bend specimens with fatigue pre-crack were conducted for two steels that have different ductile crack growth resistance with almost the same CTOD level for crack initiation, whereas both steels have the same “Mechanical properties” in terms of strength and work hardenability. The observation of crack growth behaviors provided that different mechanisms between ductile crack initiations from fatigue pre-crack and subsequent growth process could be applied. It was found that two “Mechanical properties” associated with ductile damage of steel could mainly influence CTOD-R curve; one is a resistance of ductile crack initiation estimated with critical local strain for ductile cracking from the surface of notched specimen, and the other one is a dependence of stress triaxiality on ductility obtained with circumferentially notched round-bar specimens. The damage model for numerically simulating the R-curve was proposed taking the two “ductile properties” into account, where ductile crack initiation from crack-tip was in accordance with critical local strain based criterion, and subsequent crack growth GTN (Gurson-Tvergaard-Needleman) based triaxiality dependent damage criterion. The proposed model accurately predicted the measured R-curve for the two steels used with the same “strength properties” through ductile crack initiation to growth.
Authors: Fumiyoshi Minami, Mitsuru Ohata, Yasuhito Takashima
Abstract: As the result of the international standardization work in Japanese IST project, ISO 27306 were published in 2009 for correction of CTOD fracture toughness for constraint loss in steel components. ISO 27306 employs an equivalent CTOD ratio based on the Weibull stress criterion, which leads to more accurate fracture assessment than the conventional fracture mechanics assessment. On the occasion of the 1st periodical review, the revision of ISO 27306 has been proposed from Japan. This paper describes the key contents of the new ISO 27306. A case study is included on the fracture assessment of a wide plate component according to FAD (failure assessment diagram) approach specified in BS 7910:2013.
Showing 1 to 10 of 12 Paper Titles