Papers by Author: Giuseppe Carlo Marano

Paper TitlePage

Authors: Giuseppe Carlo Marano, Rita Greco
Abstract: This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.
Authors: Raffaello Bartelletti, Gabriele Fiorentino, Giuseppe Lanzo, Davide Lavorato, Giuseppe Carlo Marano, Giorgio Monti, Camillo Nuti, Giuseppe Quaranta, Nunziante Squeglia
Abstract: Understanding the structural behavior of heritage buildings is usually a very complicated task because they typically present complex deterioration and damage patterns which cannot be fully evaluated by means of visual inspections. Moreover, the reliability of such constructions largely depends on different materials, structural components and details, the health of which is often unknown or affected by great uncertainties. In this regard, the experimental dynamic testing of heritage buildings and monuments subjected to ambient vibrations has become a valuable tool for their assessment because of the minimum interference with the structure. Traffic-induced vibrations are not always a feasible dynamic load for monumental buildings due to their very low intensity or owing to existing restrictions to road and rail traffic. On the other hand, the analysis of the experimental response under earthquakes can lead to more relevant information about the dynamic behavior of historic constructions, provided that the structure is equipped with a permanent sensor network. Within this framework, the present work illustrates preliminary results carried out from time and frequency domain analyses performed on the experimental dynamic response of the leaning tower of Pisa using seismic records. The main dynamic features of the monument have been identified, and then examined taking into account the seismic input and the soil-foundation-structure interaction.
Authors: Raffaello Bartelletti, Gabriele Fiorentino, Giuseppe Lanzo, Davide Lavorato, Giuseppe Carlo Marano, Giorgio Monti, Camillo Nuti, Giuseppe Quaranta, Fabio Sabetta, Nunziante Squeglia
Abstract: The most recent studies about the seismic behavior of the leaning Tower of Pisa that consider the soil-foundation-structure interaction date back to twenty years ago. From 1999 to 2001, the foundation of the monument was consolidated by means of under-excavation and the "Catino" at the basement was rigidly connected to the foundation. Meanwhile, significant progresses have been made in the field of earthquake engineering. Therefore, the need exists to assess the dynamic behavior of the Tower in light of the novelties occurred in the past decades. In the present study, the mechanical characteristics of the foundation have been calibrated comparing the outcomes of the experimental dynamic monitoring with the results of the finite element analysis performed on a simple but effective model. The scenario earthquakes for return periods equal to 130 years and 500 years are also presented.
Showing 1 to 3 of 3 Paper Titles