Papers by Author: Guo Ge Zhang

Paper TitlePage

Authors: Guo Ge Zhang, Hai Tao Huang, Helen Lai Wah Chan, Li Min Zhou
Abstract: Porous barium strontium titanate−titania (BST−TiO2) nanocomposite was developed by the combination of electrochemical anodization and hydrothermal synthesis. Self organized titania nanotube arrays were first fabricated by electrochemical anodization of titanium foil in 0.2 wt.% HF. The as-anodized titania was then used as a template and was subject to a hydrothermal treatment in the solution mixture of barium hydroxide and strontium hydroxide with different molar ratios. Well crystallized barium strontium titanate was developed directly from the titania nanotubes. Annealing was carried out to transform residual amorphous titania to crystallized anatase, resulting in the porous BST−TiO2 nanocomposite. The surface morphology and structure of the nanocomposite were characterized. The photoelectrochemical response of the BST−TiO2 composite was investigated and the photocatalytic property was evaluated through the photo-decomposition of an organic dye solution. The effect of hydrothermal parameters on the surface morphology and the photocatalytic activity of the nanocomposite was studied.
Authors: Yi He Zhang, Qing Song Su, Li Yu, Li Bing Liao, Hong Zheng, Hai Tao Huang, Guo Ge Zhang, Ying Bang Yao, Cindy Lau, Helen Lai Wah Chan
Abstract: Phlogopite with layered silicate structure had been firstly chemically modified via an in situ intercalation method, and phlogopite-polymer nanocomposite films were prepared from 2,2'-bis (3,4-dicarboxyphenyl) hexafluropropane dianhydride (6FDA) and oxydimethyl aniline (ODA) in N,N-dimethylacetamide as a solvent by using in-situ polymerization process combined with ultrasonic dispersion and multi-step curing. The structure of phlogopite minerals and its polymer nanocomposites were characterized by X-ray diffraction (XRD) and infrared spectra (FTIR) respectively. The experimental results indicated that the phlogopites with layered nanostructure had lost their ordered structure and had been exfoliated or intercalated. Thereafter, they were dispersed randomly in the polyimide matrix. The dependence of dielectric properties and thermal stabilities of the nanocomposite films on the phlogopite content and frequency were studied.
Authors: Yi He Zhang, Qing Song Su, Li Yu, Hong Zheng, Hai Tao Huang, Guo Ge Zhang, Ying Bang Yao, Helen Lai Wah Chan
Abstract: A sol-gel process was used to prepare polyimide-silica hybrid films from the polyimide precursors and TEOS in N,N- dimethyl acetamide, then the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 80nm to 1µm, depending on the size of silica particles. The structure and dielectric constant of the hybrid and porous films were characterized by FTIR,SEM. The porous films displayed relatively low dielectric constant compared to the hybrid polyimide-silica films.
Showing 1 to 3 of 3 Paper Titles