Papers by Author: Hong Jian Liao

Paper TitlePage

Authors: Hong Jian Liao, Jian Liu, Yan Gang Zhao, Zheng Hua Xiao
Abstract: Analysis of dynamic behavior of soil-structure interaction (SSI) is a complicated problem due to the complexities of soil behaviors and dynamic analysis. It is difficult to solve SSI with analytical methods. However, numerical methods with highly developed computer technique are efficient. Based on the advanced nonlinear finite element analysis software MSC.Marc, SSI on loess ground is studied. An approach for the application of MSC.Marc in SSI analysis is presented and an example is given. Hyperbolic soil constitutive relationship and viscous boundary conditions are adopted in the soil model. Moreover, contact between the embedded columns and the adjacent soil is considered. Response spectrum analysis of the result is carried out. Some conclusions about the seismic response of soil-structure system under different soil stiffness and different soil-layer thickness conditions are given. A new way of analyzing SSI for loess ground is provided.
Authors: Shui Cheng Yang, Li Song, Hong Jian Liao
Abstract: The authors present a procedure for the analysis of the stability and propagation of cracks in arch dams based on linear elastic fracture mechanics. A finite element method was used to calculate the stress intensity factors(KⅠ, KⅡ and KⅢ) of crack in the concrete arch dam, and fracture analysis for arch dams was carried out, which based on the criterion of three-dimensional mixed mode fracture of concrete from the experiment. The analysis method can be applied to evaluate the safety of the arch dam and improve the design for arch dam.
Authors: Zong Yuan Ma, Hong Jian Liao, Fa Ning Dang
Abstract: Using the finite difference code FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) and UST (Unified Strength Theory), the influence of the intermediate principal stress effect on the problems of flat punch are analyzed in this paper. The values of the ultimate bearing capacity resulting from numerical analyses and the analytical solution of Prandtl’s strip punch problem are compared. The three-dimensional problems of strip, rectangular, square and circular punches on a semi infinite metallic medium have been analyzed.
Authors: Li Jun Su, Jian Hua Yin, Hong Jian Liao
Abstract: Soil nailing, developed from the New Austrian Tunnelling Method, has been widely used in many countries and regions in the world since the 1970’s. This technique is used to stabilize in situ soil mass by installing a large number of closely spaced unstressed inclusions into the soil mass to increase its strength and stability. Since the mid 1970’s, several design methods have been proposed based on laboratory and field tests. Among the design criteria in these methods, the pull-out resistance of a soil nail is a key parameter that controls the stability assessment of soil nail structure. In the previous investigations, the soil dilatancy was found to be an important factor that influences the soil nail pull-out resistance especially for drill-and-grout soil nails. In order to study the influence of soil dilatancy on soil nail pull-out resistance, laboratory pull-out tests and numerical parametric studies have been carried out for soil nails in Completely Decomposed Granite (CDG) fill. The results show that the soil dilatancy has a significant influence on the soil nail pull-out resistance.
Authors: Li Jun Su, Hong Jian Liao, Jian Hua Yin
Abstract: In this paper, a diatomaceous soft rock is studied. Triaxial tests had been conducted on this soft rock. From the test results, it is found that the stress-strain curve of this soft rock has a notable strain-softening tendency. In order to study its time-dependent stress-strain behavior, a constitutive model that can describe not only the strain-hardening behavior, but also the strain-softening behavior must be constructed. Based on Perzyna’s fundamental assumptions of the elastic visco-palstic theory, a visco-plastic flow rule, and Yin and Graham’s 3-D elastic visco-palstic constitutive model (3-D EVP model), the constitutive formulation under a triaxial stress state is obtained in this paper. The derived formulation can be used to simulate the time-dependent stress-strain behavior of both consolidated undrained and consolidated drained triaxial tests of soils and rocks. In this paper, the constitutive formulation is used to simulate the time-dependent stress-strain behavior of consolidated undrained triaxial tests of the soft rock studied in this paper. The simulated results are compared with the triaxial test results. The comparison of the results shows that model predictions agree well with measured results. This demonstrates that the EVP model can be used to describe the time-dependent stress-strain behavior of the soft rock studied in this paper.
Authors: Li Jun Su, Jian Hua Yin, Shan Yong Wang, Hong Jian Liao
Abstract: Soil nailing is a widely used technique for stabilizing slopes and excavations. In all current design methods, the nail-soil interface shear strength, that is, the pull-out resistance of a soil nail is an important parameter which controls the design and safety assessment of the soil nailing system. The pressure grouting is a cost effective method for increasing the soil nail pull-out resistance and in turn improving the performance of the nailed structure. In this paper, a three dimensional (3-D) finite element (FE) model for pull-out tests is established and verified by comparing simulated results with measured data. This model is then used to simulate the effect of grouting pressure on the soil nail pull-out resistance.
Authors: Bo Han, Hong Jian Liao, Kyoji Sassa, Fa Wu Wang
Abstract: This paper is mainly concerned with the saturated-unsaturated seepage analysis of embankment dams based on unsaturated soil theory and the reliability analysis of embankment dam based on conception of reliability. The transient seepage due to change of the water level is calculated using the finite element method based on unifying saturated-unsaturated seepage governing equations. The transient pore water pressures are then used for stability analyses of embankment dam considering the effects of suction on shear strength of unsaturated soils. Meanwhile, combined with reliability computation, the Monte-Carlo stimulation method is used to calculate the corresponding reliability index dealing with the stochastic features of soil parameters. The reliability of different water level condition of embankment dams has been analyzed. The effects of different reservoir water level drawdown and raise speeds on reliability of embankment dam are discussed.
Authors: Zheng Hua Xiao, Bo Han, Akenjiang Tuohuti, Hong Jian Liao
Abstract: This paper is mainly concerned with the saturated-unsaturated seepage analysis of earth dams based on unsaturated soil theory and the stability analysis of earth dams based on conception of slices. At first, beginning basic seepage theory, thesis introduce the saturated-unsaturated and steady-unsteady seepage differential equation of porous media and the FEM regarding hydraulic pressure head as basic unknown quantity. Then considering the shear strength of unsaturated soil, the method of analysis of general limit equilibrium has been approved and it can be used in the analysis of the stability of saturated-unsaturated slopes. Through an example it is respectively discussed effects of seepage flow when water head is changed in earth dam and the effects of percolation in the stability of the earth dam slope. Some helpful conclusions are gained. This can be making the best of the tow methods and the results can be used in engineering for reference.
Showing 1 to 10 of 16 Paper Titles