Papers by Author: J. Jeswiet

Paper TitlePage

Authors: J. Jeswiet
Abstract: The use of computers in manufacturing has enabled the development of several new sheet metal forming processes. This paper describes modifications that have been made to traditional forming methods such as conventional spinning and shear forming, where deformation is localized. Recent advances have enabled this localized deformation to be accurately controlled and studied. Current developments have been focused on forming asymmetric parts using CNC technology, without the need for costly dies. Asymmetric Incremental Forming has the potential to revolutionize sheet metal forming, making it accessible to all levels of manufacturing.
35
Authors: J. Jeswiet, Joost R. Duflou, Alexander Szekeres, P. Lefebvre
Abstract: Single Point Incremental Forming is a new process, which has been developed to make both Rapid Prototyped products and low volume product batches from Sheet Metal. This paper presents a case study of the manufacture of a solar cooker cavity for developing country applications. In the first instance the request was for a rapid prototype, which quickly evolved into a request for low volume production of solar cookers for the developing country market. The paper describes the manufacture of the solar cooker cavity, and shows how the possibility of manufacturing part of the solar cooker, by Single Point Incremental Forming, gives rise to the possibility of manufacturing other parts for the solar cooker less expensively.
487
Authors: Alexander Szekeres, M. Ham, J. Jeswiet
Abstract: Forces are measured in Single Point Incremental Forming with a spindle mounted sensor. Results for AA3003 aluminum cones and pyramids are shown. Forces are measured for parts with a 75° forming angle, at which shear cracks are expected to occur. Forces in the three directions are measured on the spindle with force spikes being observed when the tool changes direction at pyramid corners, and reductions in force when stepping between contours. There is also a force variation as the forming tool moves along the pyramid wall. A comparison is made between the forces measured for cones and pyramids.
551
Authors: J. Jeswiet, Joost R. Duflou, Alexander Szekeres
Abstract: Forces have been measured in Two Point Incremental Forming and Single Point Incremental Forming of Sheet Metal. It is necessary to know the magnitude of these forces when trying to determine if the equipment available is capable of Forming Sheet Metal by either one of the two foregoing processes. The magnitude of forces is also needed when developing appropriate models for the Incremental Sheet Forming. The forces measured in forming cones and truncated pyramids from AA 3003-0 are described.
449
Authors: J. Jeswiet, David J. Young, M. Ham
Abstract: Although not standard, Forming Limit Diagrams, FLD’s, are used throughout the automotive industry as a preliminary tool to determine if a sheet metal forming process is capable of forming a good part. FLD’s show a limited range of strains on the diagram; typically the range is 0 to 1 on the major strain axis. A new rapid prototyping process called Single Pont Incremental Forming, SPIF, experiences strains over 3. As FLD’s do not typically cover that level of strain, a new method for developing FLD’s is needed. Such a method is proposed in this paper. Research has been conducted with five different shapes, formed using Single Point Incremental Forming. The part shapes utilized contain the most common combinations of angles and curves observed in formed sheet metal products. The strains encountered in forming each of these parts are measured and the strain data is then plotted on the same FLD. These new FLD’s can then be utilized as a predictive tool for engineers to determine if their design can be produced using the SPIF process.
409
Authors: M. Ham, J. Jeswiet
Abstract: Single Point Incremental Forming (SPIF) is a new method of forming sheet metal for which not all forming limits and forming parameters are yet completely understood. In this paper, a Box-Behnken design of experiment (DOE) is used to execute an experimental study used to determine the forming limits in Single Point Incremental Forming (SPIF). The Box-Behnken allows for good accuracy in defining a surface response for a relatively low number of experimental runs – hence its usefulness in experimental work. The Box-Behnken used in this paper solved five factors at three levels in forty six runs. The five factors analyzed are based on the most critical factors effecting SPIF; they are material type, material thickness, formed shape, tool size and incremental step size (depth of each step in form). The data resulting from the Box-Behnken progressed into graphical response surfaces; the response surfaces allow designers to determine what factors they need to select in order to successfully form a part using SPIF.
629
Showing 1 to 6 of 6 Paper Titles