Papers by Author: Jan Luyten

Paper TitlePage

Authors: Frans M.M. Snijkers, Steven Mullens, Anita Buekenhoudt, Jan Luyten, W. Vandermeulen
Abstract: Ceramic foams can be used as filters, dust collectors, light weight components and catalyst carriers. They can be produced by a variety of techniques. The performance of ceramic foams will be strongly improved when their mechanical properties are improved. For this reason, we produced ceramic foams both by a modified reaction bonded (RB) replica technique and by gel casting. With both methods, reticulated foam structures with enhanced mechanical strength were obtained. Zeolites are a special type of materials that are characterized by high catalytic properties. They can be brought on a structured carrier by dip and slurry coating. Nevertheless, in situ coating has as main advantage that the support is used as the base for nucleation. This results in the formation of a chemical bond between the zeolite crystals and the support. The goal of this contribution is twofold: at first we demonstrate how Al2O3 foams with improved mechanical strength can be produced both by the modified RB-alumina replica technique and by gel casting. Secondly, it is shown that these ceramic foams can be coated with (silicalite) zeolite crystals by insitu crystallization from a precursor sol. The two-layer material combinations have been characterized with FESEM, XRD, CT (computer assisted tomography), IA (Image Analysis) and by mechanical tests.
Authors: Tim Van Gestel, Carlo Vandecasteele, Anita Buekenhoudt, Chris Dotremont, Jan Luyten, Roger Leysen
Authors: Jan Schrooten, Tim Van Cleynenbreugel, Saartje Impens, Astrid Bakker, Jan Luyten, Jos Vander Sloten, Frank P. Luyten
Abstract: Tissue engineering (TE) aims/seeks to achieve the substitution of organ transplantation by the creation of living, functional tissues. It has been suggested that biocompatible porous materials (scaffolds) and a controllable 3D environment are required to aid in the 3D cell organisation and their development into functional tissue. Our research envisions a TE-approach towards the repair of large, load bearing defects in long bones. In vitro standardised, systematic, quantitative screening of potential bone scaffolds is required to understand how scaffolds can affect cell behaviour. This screening will avoid a trial-and-error approach and thus limit the number of animal experiments. Such a screening should be based on the knowledge of mechanical, physical and (bio)chemical scaffold properties and their interaction with cell behaviour. In addition, the design and production of a clinically relevant scaffold requires control over its mechanical behaviour and a new approach for cell seeding in a 3D scaffold, as well as providing nutrition for the engrafted cells. The objective of this research is to gain substantial knowledge about guided bone regeneration and to develop quantitative methodologies that can lead to consistent and reproducible bone regeneration.
Authors: Saartje Impens, Roosmarijn Schelstraete, Steven Mullens, Ivo Thijs, Jan Luyten, Jan Schrooten
Abstract: The degradation rate of custom made calcium phosphate scaffolds, designed for bone tissue engineering applications, influences the healing process of critical size bone defects. An optimal degradation rate exists at which the neo-formed bone replaces the CaP (calcium phosphate) scaffold [1]. Consequently investigating the complex degradation behavior (dissolution, reprecipitation, osteoclast activity) of custom made CaP structures gains interest. In this work different in vitro dissolution experiments were performed to study the degradation behavior of 4 by composition different calcium phosphates. Ideally these experiments should have a predictive power regarding the in vivo degradation behavior. In vitro dissolution tests still lack standardization. Therefore this study focuses on the influence of two dissolution constraints: (i) the material’s macrostructure (porous - dense), (ii) the regenerated fluid flow (bath shaking - perfusion). From 4 different CaP compositions porous structures and as a reference dense disks were produced, using the same starting powder and heat treatment. To compare the different dissolution tests, all data was normalized to the CaP surface area. Results show that besides the structural appearances of the CaP structures, also the design of the dissolution test influences the in vitro dissolution behavior. Moreover there is a need to take the morphology of the dissolved material into account. The CaP perfusion tests show dissolution dynamics that resemble the in vivo reality more closely than the shaking bath experiments.
Authors: J. Vangrunderbeek, Jan Luyten, A. Smolders, F. De Schutter
Authors: Frans M.M. Snijkers, Marcel D. Snel, J.F.C. Cooymans, Steven Mullens, A.A. Kodentsov, G. de With, Jan Luyten
Abstract: Since conventional production of high-temperature materials involves high investments and costly consumption of both energy and time, reaction engineering methodology combined with near-net shaping is often the answer to problems associated with the fabrication of advanced materials. Over the last decades, the number of different reaction–based processing methods for near-net-shaped ceramics has gradually increased. In this review, different reactive processing techniques and their potential for near-netshaping are treated, e.g. SHTS (self-supporting high temperature synthesis), the Lanxide method DIMEX®, reaction bonding (RB), reactive processing of Alumina-Aluminide Alloys (3A) and Al2O3-Al alloyed metal composites (3AMC). In addition to their potential for near-net shaping, other advantages to reactive processing routes are recognized to be reduced processing temperatures, reduced glassy phase formation at the grain boundaries, fine grained microstructures and improved mechanical strength. Since the exothermic reactions constitute the base for reactive processing of high quality materials in an economic way, control of these reactions is essential. The process flows are described together with characteristic features of process and materials. In addition, specific aspects of reaction-based synthesis will be illustrated with examples from own work in the area of reaction bonding of silicon nitride and alumina.
Authors: Jan Luyten, J.F.C. Cooymans, A. De Wilde, I. Thijs
Authors: Karen Vercammen, Erwin Van Hoof, Jan Luyten
Authors: Jan Luyten, J.F.C. Cooymans, Frans M.M. Snijkers
Authors: Jan Luyten, Anita Buekenhoudt, F. De Barquin, J. Elsen
Showing 1 to 10 of 12 Paper Titles