Papers by Author: Jian Qiang Hu

Paper TitlePage

Authors: Zhi Wu Chen, Zhen Ya Lu, Jian Qiang Hu
Abstract: Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.94(Ba1-xSrx)0.06TiO3 (abbreviated as BNBST-100x, with x ranges from 0.02 to 0.1) have been investigated. Effects of amount of Sr-substitution on the electrical properties and crystal structure of the ceramics were studied. The BNBST-100x ceramics sintered at 1200°C for 2h in air have high density around 5.69~5.75g/cm3. X-ray diffraction (XRD) analysis shows that all of the BNBST-100x ceramics have pure perovskite structure. At high amount level of Sr-substitution, the crystal structure of the samples changes from rhombohedral to tetragonal symmetry. Piezoelectric and dielectric measurements reveal that Sr-substitution amount within a certain range will lead to the increase of piezoelectric coefficient (d33), electromechanical coupling factor (kp), and relative dielectric constant (ε33 T/ε0). At 6 mol% Sr-substitution level, the d33 and kp of the ceramics reach maximum, with values of 168 pC/N and 34%, respectively.
Authors: Jian Qiang Hu, Zhi Wu Chen
Abstract: Bi2O3 doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT6) lead-free piezoelectric ceramics were fabricated by a conventional sintering technique. The effects of Bi2O3 on the piezoelectric properties and microstructures of the doped BNBT6 were investigated. X-ray diffraction analysis showed that a solid solution was formed when Bi2O3 diffused into BNBT6 lattice and the crystal structure of the sintered hybrid changed from rhombohedral to tetragonal symmetry with increasing Bi2O3 amount. Piezoelectric and dielectric properties measurements revealed that doping Bi2O3 within a certain range enhanced the piezoelectric coefficient (d33), electromechanical coupling factor (kp), relative dielectric constant (ε33 T/ε0), and dielectric loss (tanδ). When 3mol% Bi2O3 was doped, both d33 and kp of the ceramics reached their maxima, 165pC/N and 24%, respectively.
Showing 1 to 2 of 2 Paper Titles