Papers by Author: M. Kartal

Paper TitlePage

Authors: M. Kartal, Rafal M. Molak, Mark Turski, S. Gungor, Michael E. Fitzpatrick, Lyndon Edwards
Abstract: The aim of this study was to develop a method of extracting local mechanical properties from weld metal by strain mapping using the digital image correlation (DIC) technique. The feasibility of determining local stress-strain behaviour in the weld zone of a 316H stainless steel pipe with a girth weld was investigated by tensile tests of specimens machined from the pipe so that it contained the weld at its centre. The tensile test was recorded using a high resolution digital camera and the DIC technique was used to obtain the complete set of full field displacement maps during the tensile test. The local strain was calculated at every sub-region of 32×32 pixels, which enabled the local stress-strain behaviour for this region to be determined. Results from these tests show the variability of the elastic modulus, yield stress and UTS across the weld. To check the reliability of the technique, a set of micro tensile samples, with gauge length of 3.7mm and crosssectional area of 0.7×0.7 mm2, were machined from the various locations in and around the weld zone. The comparison of stress-strain curves determined from micro-samples to stress-strain curves from the corresponding locations within a larger more conventional tensile specimen shows reasonably good agreement.
127
Authors: M. Kartal, Mark Turski, Greg Johnson, Michael E. Fitzpatrick, S. Gungor, Philip J. Withers, Lyndon Edwards
Abstract: This paper describes the measurement of longitudinal residual stresses within specially designed 200x180x25mm groove weld specimens. The purpose of these measurements was to compare the residual stress field arising from single and multi-pass weld beads laid down within the constraint of a groove in order to validate finite element simulations of the welding process. Measurements were made over the cross section at the mid-bead length, utilising the relatively new Contour method and neutron diffraction. Results from these measurements indicate a larger peak tensile longitudinal residual stresses within the weld region of the multi-pass weld sample. Good agreement is found between both techniques.
671
Authors: Rafal M. Molak, M. Kartal, Zbigniew Pakiela, W. Manaj, Mark Turski, S. Hiller, S. Gungor, Lyndon Edwards, Krzysztof Jan Kurzydlowski
Abstract: The aim of this collaborative study was to measure mechanical properties of 14MoV67-3 steel taken from small sections of material machined in-situ from an operating high pressure collector pipe after different operating lifetimes (from 0h to 186 000h) at elevated temperatures (540°C). Conventional methods of measuring mechanical properties of materials, such as the uniaxial tensile test require relatively large test samples. This can create difficulties when the amount of material available for testing is limited. One way of measuring mechanical properties from small quantities of material is using micro tensile test samples. In this work, micro-samples with a total length of 7.22mm were used. Digital Image Correlation method (DIC) was employed for the strain measurements in a uniaxial tensile test. This paper shows that there is measurable difference in the yield, ultimate tensile strength and elongation to failure as a function of the plant operating conditions. This work demonstrates, therefore, a ‘semi-invasive’ method of determining uniaxial stress-strain behaviour from plant components.
187
Showing 1 to 3 of 3 Paper Titles