Papers by Author: Marcin Adamiak

Paper TitlePage

Authors: Monika Karoń, Marcin Adamiak
Abstract: The purpose of this paper is to present the microstructure and mechanical behavior of 6060 aluminum alloy after intense plastic deformation. Equal Channel Angular Pressing (ECAP) was used as a method of severe plastic deformation. Before ECAP part of the samples were heat treated to remove internal stresses in the commercially available aluminium alloy. The evolution of microstructure and tensile strength were tested after 1, 3, 6 and 9 ECAP passes in annealed and non annealed states. It was found that intensely plastically deformed refined grains were present in the tested samples and exhibited increased mechanical properties. Differences were noted between samples without and after heat treatment
81
Authors: Leszek Adam Dobrzański, Anna Włodarczyk-Fligier, Marcin Adamiak
Abstract: Investigations of composite materials based on EN AW-Al Cu4Mg1(A) aluminum alloy reinforced with the Ti(C,N) particles with various weight ratios of 5, 10, and 15% are presented. Powders of the starting materials were mixed in the laboratory vibratory ball mill to acquire the uniform distribution of reinforcement particles in the matrix material. The components were initially compacted at cold state in a die with the diameter of ∅ 26 mm in the laboratory vertical unidirectional press – with a capacity of 350 kN. The obtained P/M compacts were heated to a temperature of 480÷500°C and finally extruded – with the extrusion pressure of 500 kN. Bars with a diameter of 8 mm were obtained as the end product. Based on the microstructural examinations of the obtained composite materials, the uniform distribution of the reinforcing particles in the aluminum matrix was revealed. Hardness tests, tensile tests and the ultimate compressive strength tests made it possible demonstrate that all these properties change along with the reinforcing particles concentration change.
243
Authors: Leszek Adam Dobrzański, Anna Włodarczyk-Fligier, Marcin Adamiak
Abstract: Investigations of composite materials based on EN AW-Al Cu4Mg1(A) aluminum alloy reinforced with the Ti(C,N) particles with various weight ratios of 5, 10 and 15% are presented. The metallographic examinations of composite materials show banding of the reinforcing particles in aluminum matrix after extrusion process. Structure oriented in parallel with extrusion direction is observed in composites materials. Portion of reinforcement particles Ti(C,N) has influence on the mechanical properties of composite materials. The increase of hardness, abrasive wear and decrease of compression strength, tensile strength is observed with the portion growth of reinforcement particles.
895
Authors: Leszek Adam Dobrzański, Anna Włodarczyk-Fligier, Marcin Adamiak
Abstract: Investigation results of the heat treatment effect on the corrosion resistance of the EN AW-AlCu4Mg1 (A) aluminium alloy base composite materials reinforced with the Ti(C,N) particles with varying volume fractions are presented. Examinations were made of the EN AW-Al Cu4Mg1(A) aluminum alloy, and also of the composite materials with the matrix from this aluminium alloy. It was found out, basing on own research, that corrosion wear after the corrosion tests of the composite materials with the addition of 5% of the Ti(C,N) particles is smaller compared to the pure aluminium alloy. Precipitation hardening causes improvement of the corrosion resistance of the investigated composite materials and - like in the state before the heat treatment, materials with 5% portion of the Ti(C,N) reinforcement ratio are characteristic of more advantageous features compared to the material without the reinforcement.
845
Authors: Leszek Adam Dobrzański, Marcin Adamiak
381
Showing 1 to 5 of 5 Paper Titles