Papers by Author: Marco Mauceri

Paper TitlePage

Authors: Philipp Schuh, Grazia Litrico, Francesco La Via, Marco Mauceri, Peter J. Wellmann
Abstract: We report on the growth of bulk 3C-SiC by sublimation on epitaxial seeding layers (3C-SiC/Si) from chemical vapor deposition. We have reached a materials thickness of 0.85 mm and an area of 10.5 cm2 which can be enlarged further. The high crystalline quality is characterized by the absence of secondary polytype inclusions and the absence double position grain boundaries.
Authors: Thomas Kreiliger, Marco Mauceri, Marco Puglisi, Fulvio Mancarella, Francesco La Via, Danilo Crippa, Wlodek Kaplan, Adolf Schöner, Anna Marzegalli, Leo Miglio, Hans von Känel
Abstract: The growth morphology of epitaxial 3C-SiC crystals grown on hexagonal pillars deeply etched into Si (111) substrates is presented. Different growth velocities of side facets let the top crystal facet evolve from hexagonal towards triangular shape during growth. The lateral size and separation between Si pillars determine the onset of fusion between neighboring crystals during growth at a height tailoring of which is crucial to reduce the stacking fault (SF) density of the coalesced surface. Intermediate partial fusion of neighboring crystals is shown as well as a surface of fully coalesced crystals.
Authors: Giuseppe D'Arrigo, Andrea Severino, G. Milazzo, Corrado Bongiorno, Nicolò Piluso, Giuseppe Abbondanza, Marco Mauceri, Giuseppe Condorelli, Francesco La Via
Abstract: 3C-SiC devices are hampered by the defect density in heteroepitaxial films. Acting on the substrate, it is possible to achieve a better compliance between Si and 3C-SiC. We present here an approach to favorite defect geometrical reduction in both [ ] and [ ] directions by creating Inverted Silicon Pyramids (ISP). A study of 3C-SiC growth on ISP is reported showing benefits in the film quality and a reduction in the linear density of stacking faults. Growth on ISP leads also to a decrease in the 3C-SiC residual stress as well as in the bow of the Si/SiC system.
Authors: Ruggero Anzalone, Andrea Severino, Giuseppe D'Arrigo, Corrado Bongiorno, Patrick Fiorenza, Gaetano Foti, Giuseppe Condorelli, Marco Mauceri, Giuseppe Abbondanza, Francesco La Via
Abstract: The aim of this work is to improve the heteroepitaxial growth process of 3C-SiC on Si substrates using Trichlorosilane (SiHCl3) as the silicon growth precursor. With this precursor it has been shown that it is possible to simultaneously increase the growth rate of the process and avoid the nucleation of silicon droplets in the gas phase. Growth experiments were conducted on three (3) Si substrate orientations in order to assess the impact of the Si substrate on the resulting 3C-SiC film. X-ray Diffraction (XRD), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) analysis show the important role of the substrate orientation for the growth process. The different orientation of the substrate modifies the morphology of the 3C-SiC crystalline structure, mostly by changing the density of micro-twins and stacking faults inside the film.
Authors: Andrea Severino, Massimo Camarda, Nicolò Piluso, M. Italia, Giuseppe Condorelli, Marco Mauceri, Giuseppe Abbondanza, Francesco La Via
Abstract: Growth of 3C-SiC films on an off-axis (111) Si substrate, with a miscut of 4° towards the <110> direction, is here reported. An extensive material characterization has been conducted by means of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Raman spectroscopy, indicating a very promising film quality with extremely flat surface and interface. Notwithstanding the excellent film quality, the wafer bow is still limiting its full employment in device realization.
Authors: Andrea Severino, Corrado Bongiorno, Stefano Leone, Marco Mauceri, Giuseppe Pistone, Giuseppe Condorelli, Giuseppe Abbondanza, F. Portuese, Gaetano Foti, Francesco La Via
Abstract: 3C-SiC/Si heteroepitaxy is hampered by large mismatches in lattice parameters (19.7%) and thermal expansion coefficient (8%) leading to 3C-SiC films containing high defects density. To reduce the presence of defects, a multi-step growth process in a CVD reactor is used. The aim of the work is to study the effect of carbonization on differently oriented Si surfaces, experiencing a 200°C-wide temperature range in a CVD reactor, to improve the crystalline quality. TEM analysis are carried out to evaluate thickness, crystal orientations and defects of carbonized layers with respect to the time-dependence of the process and to the different orientations of the Si substrate. It will be shown that process-related defects are strictly correlated to the substrate orientation either for size, density, occupied area, shape or thickness. Uniform, flat and crystalline thin SiC films are obtained with a low defect density.
Authors: Hans von Känel, Leo Miglio, Danilo Crippa, Thomas Kreiliger, Marco Mauceri, Marco Puglisi, Fulvio Mancarella, Ruggero Anzalone, Nicolo’ Piluso, Francesco La Via
Abstract: The heteroepitaxial growth of 3C-SiC on Si (001) and Si (111) substrates deeply patterned at a micron scale by low-pressure chemical vapor deposition is shown to lead to space-filling isolated structures resulting from a mechanism of self-limitation of lateral expansion. Stacking fault densities and wafer bowing may be drastically reduced for optimized pattern geometries.
Authors: Alfonso Ruggiero, Sebania Libertino, Marco Mauceri, Ricardo Reitano, Paolo Musumeci, Fabrizio Roccaforte, Francesco La Via, Lucia Calcagno
Authors: Francesco La Via, Fabrizio Roccaforte, Salvatore di Franco, Alfonso Ruggiero, L. Neri, Ricardo Reitano, Lucia Calcagno, Gaetano Foti, Marco Mauceri, Stefano Leone, Giuseppe Pistone, Giuseppe Abbondanza, Gian Luca Valente, Danilo Crippa
Abstract: The effects of the Si/H2 ratio on the growth of the epitaxial layer and on the epitaxial defects was studied in detail. A large increase of the growth rate has been observed with the increase of the silicon flux in the CVD reactor. Close to a Si/H2 ratio of 0.05 % silicon nucleation in the gas phase occurs producing a great amount of silicon particles that precipitate on the wafers. The epitaxial layers grown with a Si/H2 ratio of 0.03% show a low defect density and a low leakage current of the Schottky diodes realized on these wafers. For these diodes the DLTS spectra show thepresence of several peaks at 0.14, 0.75, 1.36 and 1.43 eV. For epitaxial layers grown with higher values of the Si/H2 ratio and then with an higher growth rate, the leakage current of the Schottky diodes increases considerably.
Authors: Massimo Camarda, Stefania Privitera, Ruggero Anzalone, Nicolò Piluso, Patrick Fiorenza, Alessandra Alberti, Giovanna Pellegrino, Antonino La Magna, Francesco La Via, Carmelo Vecchio, Marco Mauceri, Grazia Litrico, Antonino Pecora, Danilo Crippa
Abstract: In this paper we investigate the role of the growth rate (varied by changing the Si/H2 ratio and using TCS to avoid Si droplet formation) on the surface roughness (Rq), the density of single Shockley stacking faults (SSSF) and 3C-inclusions (i.e. epi-stacking faults, ESF). We find that optimized processes with higher growth rates allow to improve the films in all the considered aspects. This result, together with the reduced cost of growth processes, indicates that high growth rates should always be used to improve the overall quality of 4H-SiC homoepitaxial growths. Furthermore we analyze the connection between surface morphology and density of traps (Dit) at the SiO2/SiC interface in fabricated MOS devices finding consistent indications that higher surface roughness (step-bunched surfaces) can improve the quality of the interface by reducing the Dit value.
Showing 1 to 10 of 30 Paper Titles