Papers by Author: Marion Bartsch

Paper TitlePage

Authors: Mohammad Rizviul Kabir, Marion Bartsch, Liudmila Chernova, Janine Schneider, Klemens Kelm
Abstract: At room temperature the macroscopic tensile behavior of TiAl alloys is extremely microstructure sensitive. In general the microstructures of TiAl alloys are heterogeneous at micro and meso scale. The materials micromechanisms that occur at different length scale have to be linked for a proper understanding of the macroscopic response. In order to explore those micromechanisms, methodologies combining advanced experimental and computational analysis have been proposed. Linking microstructure and properties using a two-scale numerical model we are able to explain the stress-strain and hardening behavior of this alloy.
76
Authors: T. Lauwagie, K. Lambrinou, Iulian Mircea, Marion Bartsch, W. Heylen, Omer Van der Biest
Abstract: Cylindrical specimens made of the Ni-based super-alloy Inconel 625 (IN 625) were coated with (a) NiCoCrAlY, or (b) NiCoCrAlY and yttria-stabilised zirconia (YSZ: in this case, zirconia with 7-8 wt% yttria), using the electron beam - physical vapor deposition (EB-PVD) technique. In the bi-layer coatings, the YSZ layer is the thermal barrier coating (TBC) and the NiCoCrAlY layer is the metallic bond coat (BC). The BC improves the bonding between the substrate and the ceramic TBC, while the low thermal conductivity of the TBC o ers high-temperature protection to the substrate. This paper focuses on the determination of the elastic moduli of the substrate and the coating layers of the test samples. The elastic moduli of the three di erent materials (IN 625, NiCoCrAlY and YSZ) were determined by means of a mixed numerical - experimental technique (MNET). The employed MNET was based on the comparison of the experimentally measured resonant frequencies of the rst bending mode of the test samples to the numerically calculated ones. The unknown elastic properties were determined by ne-tuning the elastic material parameters of the numerical models so as to enable the reproduction of the experimentally measured resonant frequencies.
653
Authors: Bilge Saruhan, Uwe Schulz, Marion Bartsch
Abstract: Partially Yttria Stabilized Zirconia (PYSZ) based Thermal Barrier Coatings (TBC) manufactured by EB-PVD process are a crucial part of a system, which protects the turbine blades situated at the high pressure sector of aero engines and stationary gas turbines under severe service conditions. These materials show a high strain tolerance relying on their unique coating morphology, which is represented by weakly bonded columns. The porosity present in ceramic top coats affects the thermal conductivity by reducing the cross sectional area through which the heat flows. The increase in thermal conductivity after heat-treatment relates to the alteration of the shape of the pores rather than the reduction of their surface-area at the cross section. The studies carried out by the authors demonstrate that the variation of the parameters during the EB-PVD processing of PYSZ based top-coats alters the columnar morphology of the coatings. Consequently, these morphological changes affect primarily the thermal conductivity and eventually the Young’ Modulus which are the key physical properties of this material group. New ceramic compositions covering zirconia coatings stabilized with alternative oxides, pyrochlores and hexaluminates are addressed. Failures occurring in ceramic top coats mark the lifetime of TBC system and therefore, it is necessary that their performance should go beyond that of the-state-of-the-art materials. This context summarizes the research and developments devoted to future generation ceramic top coats of EB-PVD TBCs.
137
Authors: Bilge Saruhan, W. Luxem, Marion Bartsch, M. Schmücker, Hartmut Schneider
47
Authors: Inmaculada Lopez-Galilea, Stephan Huth, Marion Bartsch, Werner Theisen
Abstract: For reducing the porosity of single crystal (SX) nickel-based superalloys, Hot Isostatic Pressing (HIP) is used. High pressures of about 100-170 MPa lead to local deformation, which close the pores. However, since HIP also requires high temperatures (1000-1200°C) it has a pronounced effect on the microstructure and the local distribution of elements. This contribution analyses the effect of different HIP treatments on both the microstructure and the segregation of the SX superalloy LEK94 in the as-precipitation-hardened state. In addition, the effects of rapid or slow cooling are analyzed. To distinguish the effect of pressure from those of temperature, the HIPed samples are compared with specimens annealed at atmospheric pressure.
72
Authors: Marion Bartsch, Bilge Saruhan, M. Schmücker, Hartmut Schneider
250
Authors: Marion Bartsch, Iulian Mircea, Jens Suffner, Bernd Baufeld
Abstract: The basic requirement for the use of a ceramic coating is sufficient adhesion to its substrate. A measure of the adhesive properties of a coating is the interfacial fracture toughness. The test method applicable for interfacial fracture toughness measurements depends on the mechanical properties of the material system and the geometry of the test piece. In this work, indentation methods have been evaluated for the estimation of the fracture toughness of ceramic thermal barrier coatings on metallic substrates. Coatings of 100 to 300 µm thickness were applied by electron beam – physical vapour deposition. The performed test types were Vickers indentation at the interface of polished cross sections of the coating system and Rockwell indentation with a brale C indenter, penetrating the coating perpendicular to the surface. Both tests generate delamination, in which the delamination crack length corresponds to the interfacial fracture toughness. Fracture surfaces and cross sections of the fractured coatings were investigated by optical and scanning electron microscope. Determined fracture toughness values are discussed with respect to the loading conditions in the test and the fracture process – i.e. interaction between indenter and coating system and the crack propagation path.
183
Authors: Yves Gaillard, Emilio Jiménez-Piqué, Marion Bartsch, Marc Anglada
Abstract: In this paper the formation of shear bands in columnar EB-PVD thermal barriers coatings is studied. In particular, critical parameters of nucleation of shear bands, such as contact pressure and initiation of cracks in the columns, are extracted from the experimental results. The pertinence of these parameters is discussed respecting to the stress field induced in the material during the indentation.
277
Authors: Marion Bartsch, Bernd Baufeld, Serdar Dalkiliç, Iulian Mircea
Abstract: This paper gives a short overview of tests applied for the investigation of long term behaviour of thermal barrier coating systems. A variety of tests has been conducted on an exemplary material system with the coatings applied by electron beam physical vapour deposition. Damages and damage evolution in different tests are compared. Since the observed damage mechanisms are different, it is proposed to design laboratory tests as realistic as possible, especially if the test data are used for lifetime assessment. In order to get reasonable testing times, the damage accumulation has to be described as a function of loading history, long time before failure. For the case of final failure by spallation of the ceramic top coat, it is proposed to use the apparent interfacial fracture toughness as damage parameter. Several methods for measuring the apparent fracture toughness of brittle coatings are discussed with respect to their application to thermal barrier coating systems.
3
Authors: Marion Bartsch, Bernd Baufeld, S. Dalkilic, Iulian Mircea, K. Lambrinou, T. Leist, J. Yan, Anette M. Karlsson
Abstract: Strategies for time-economic lifetime assessment of thermal barrier coatings (TBC) in service are described and discussed on the basis of experimental results, achieved on material systems with coatings applied by electron beam physical vapour deposition. Service cycles for gas turbine blades have been simulated on specimens in thermo-mechanical fatigue tests, accelerating the fatigue processes by an increase of load frequency. Time dependent changes in the material system were imposed by a separate ageing, where the samples were pre-oxidized prior to the fatigue test. Results of thermo-mechanical fatigue tests on pre-aged and as-coated specimens gave evidence of interaction between fatigue and ageing processes. An alternative approach is used, which is focused on the evolution of a failure relevant damage parameter in the TBC system. The interfacial fracture toughness was selected as a damage parameter, since one important failure mode of TBCs is the spallation near the interface between the metal and the ceramic. Fracture mechanical experiments based on indentation methods have been evaluated for monitoring the evolution of the interfacial fracture toughness as a function of ageing time. It was found that the test results were influenced by both changes of the interface (which is critical in service) and changes in the surrounding material.
147
Showing 1 to 10 of 10 Paper Titles