Papers by Author: Martin F.X. Wagner

Paper TitlePage

Authors: Christian Pabst, Semen Sharafiev, Peter Groche, Martin F.X. Wagner
Abstract: The two common processes of impact welding, explosion welding and electromagnetic pulse welding, may offer great technological advantages, but at the same time exhibit poor observability due to the use of explosives and a highly transient behavior, respectively. A novel test rig is developed and enhanced to collide and weld specimens purely mechanically. Besides its simple build-up and the easy and safe operation, the test rig allows setting crucial process parameters almost independently. The test rig’s construction and improvement is described. A trigger method for high speed imaging is developed and tested. The numerical simulation of the impact shows that the conditions directly at the welding zone are predictable and can be adjusted accurately. Finally, the preparation of specimens to evaluate the influence of surface roughness and grain structure is discussed.
500
Authors: Marcel Graf, Sebastian Härtel, Alexander Bauer, Wolfgang Förster, Dagmar Bublikova, Martin F.X. Wagner, Birgit Awiszus, Bohuslav Masek
Abstract: The aim is to realize a Q&P (Quenching and Partitioning) process for a hot forged component made of low-alloyed advanced high-strength steel (AHSS) 42MnSiCr. One advantage of this steel is the low alloy concept which is cost-effective. After forging, the component is cooled down to room temperature with a subsequent heat treatment to achieve the characteristic microstructure with martensite and retained austenite. The material is annealed and then quenched to just above the martensite finish temperature (MF-temperature). Hence, in the martensitic matrix about 10 to 15% retained austenite is included. Finally, the Q&Ped material is artificially aged at 250 °C to support the diffusion process of carbon from the over-saturated martensite into the austenite. Thereby, mechanical properties of 2000 MPa for tensile strength with fracture strains of 10% can be achieved. This paper provides details of the process and material behavior for a reduction of the process chain. The goal is to develop a technology for the quenching and partitioning treatment of forged components by using the thermal energy from forging. Ideally, the quenching step should be performed in the forming dies just above the MF-temperature with additional holding on the temperature level. The majority of forged parts have different cross sections. Therefore, the cooling conditions are inhomogeneous in each cross section of the components. This cooling behavior was analyzed in laboratory tests with a forged part. Furthermore, the heat transfer coefficients were determined for different cooling media (water, air). The cooling technology was experimentally and numerically simulated in a first step for the conventional process chain (forging, cooling to room temperature, austenitisation, quenching, artificial ageing) and correlated with the microstructural evolution in combination with the component’s mechanical properties.
85
Authors: Hana Jirková, David Aišman, Indrani Sen, Martin F.X. Wagner, Mária Behúlová, Martin Kusý, Bohuslav Mašek
Abstract: Semi-solid processing is complicated by various inherent technical problems. However, once these problems are solved, thixoforming allows intricately shaped components to be manufactured very effectively – often with microstructures that cannot be produced by any other techniques. The recently introduced mini-thixoforming method is an example of such a novel technique for semi-solid processing of steel. The wall thicknesses of resulting parts are about 1 mm. Microstructures of semi-solid-processed steels typically consist of a high proportion of globular particles of metastable austenite embedded in a carbide network, the latter being much harder and more brittle. This paper illustrates that mini-thixoforming allows inverting that microstructural configuration. As an experimental material, powder steel with increased content of vanadium and chromium was used. The post-thixoforming microstructure consisted of a dispersion of carbides and high-vanadium and high-chromium eutectic in an austenitic matrix. Applying optimised processing parameters, complex-shaped parts could be produced. According to the high hardness of resulting microstructural components, the new materials are likely to exhibit extraordinary strength and wear resistance.
500
Showing 1 to 3 of 3 Paper Titles