Papers by Author: Martin Heilmaier

Paper TitlePage

Authors: T. Shanmugasundaram, V. Subramanya Sarma, B.S. Murty, Martin Heilmaier
Abstract: The microstructure and mechanical properties of nano-crystalline 2219 Al alloy (Al-6.4Cu-0.29Mn, all in wt %) was studied. Nanocrystalline powders were produced from gas atomized 2219 Al alloy powders by high energy ball milling at room temperature. Powders were collected at different milling times and X-ray diffraction (XRD) analysis was used to evaluate grain size. High Vickers hardness (250HV), high compressive strength (920 MPa) and low ductility (2%) were observed in unimodal bulk nanostructured 2219 Al alloys consolidated to 99% density by hot pressing (HP). In addition, these nanocrystalline powders were blended with 15, 30 and 50% of (gas atomized) coarse-grained powders to obtain balanced mechanical properties of enhanced yield and ultimate strength and reasonable ductility and toughness as compared to either conventional or nanocrystalline 2219 alloys.
Authors: Martin Heilmaier, Manja Krüger, Holger Saage
Abstract: We review the current development status of Mo-Si-B alloys consisting of Mo solid solution and the intermetallic phases Mo3Si and Mo5SiB2 which could take advantage of the beneficial oxidation resistance of the silicide phases and of the outstanding mechanical properties of molybdenum. For adequate low temperature toughness a continuous Mo solid solution matrix should be established in the microstructure. Besides, wrought processing of such alloys at elevated temperatures requires the presence of an ultra-fine grained (UFG) microstructure. Both the prerequisites can be fulfilled using mechanical alloying (MA) as the crucial processing step which even yields nanostructured supersaturated powders after milling. However, values for the ductile-to-brittle transition temperature (DBTT) close to room temperature are unlikely due to grain boundary embrittlement by Si segregation. The possibility of reducing this segregation tendency by various micro-alloying additions will be demonstrated. Finally, the high temperature deformation behaviour of these UFG materials will be comparatively assessed against state-of-the-art Nickelbase single-crystalline superalloys.
Showing 1 to 2 of 2 Paper Titles