Papers by Author: Masanori Kikuchi

Paper TitlePage

Authors: Fei Xu, Masanori Kikuchi
Abstract: Smoothed Particle Hydrodynamics (SPH) is a relatively new technique for simulating the dynamic response of solids, especially for high velocity impact and fracture problem. However, closer examination of SPH reveals some severe problems. The major difficulties are: (1) tensile instability; (2) zero-energy mode; (3) boundary deficiency; (4) less accuracy. One solution to these major difficulties with SPH is to improve the consistency of the kernel function. Based on the Reproducing Kernel Particle Method (RKPM), the concept of the proposed simplified linear consistency is introduced. The most attractive feature of the simplified linear consistency is the ease and cheapness of doing 3D calculation. One contribution of this paper is to show clearly the accuracy of solution gradually improved by increasing the order of the consistency. Simple 3D impacting models are established with different geometries and higher accurate results are obtained by using higher consistency kernel functions. Other features as numerical convergence, computational efficiency, etc. and some considerations of the simplified linear consistency kernel function are also discussed.
595
Authors: Yoshitaka Wada, Jun'ichi Shinbori, Masanori Kikuchi
Abstract: MG (multigrid) method is one of the most promising solvers for large scale problems. Hexahedral mesh generation and its adaptation are not enough to use for practical applications, because its mesh generation is very difficult and still labor intensive work by hand. We have developed hexahedral local refinement technique controlled by posterior error estimation. We have proposed a MG technique for unstructured hexahedral meshes with local mesh refinement. In this paper, the proposed technique is evaluated to check its performance and severe analyses of bending cantilevers. Performance of MG for unstructured hexahedral meshes is compared with that of the PCG (preconditioned conjugate gradient) through several benchmark examples of 3-D static elastic analysis. Proposed MG is faster than PCG for all problems as number of freedoms increases. Finally limitation of the proposed technique is presented.
565
Authors: Li Hua Jia, Mamtimin Gheni, Hazirti Eli, Xamxinur Abdikerem, Masanori Kikuchi
Abstract: In this paper, the iBone (Imitation Bone) model which is coupled with Turing reaction-diffusion system and FEM, is used. The numerical simulation of bone forming process by considering the osteoclasts and osteoblasts process are conducted. The results shown, that the bone mass is increased with increase of the initial load value, then fibula and femur bones are obtained respectively by keeping the required bone forming value. The different bone shapes are obtained by changing the both bone keeping value and the compressing force value. When set larger bone keeping value by keeping larger constant compressing force value, bone shape as a pipe with hole just like femur, when set smaller bone keeping value by keeping the smaller constant compressing force value, it is close to solid pillar as like fibula.
1011
Authors: Ken-Ichi Tezuka, Akiyuki Takahashi, Tomoko Takeda, Yoshitaka Wada, Masanori Kikuchi
Abstract: Bone is a complex system with adaptation and repair functions. To understand how bone cells can create a structure adapted to the mechanical environment, we proposed a simple bone remodeling model, iBone, based on a reaction-diffusion system [1]. A 3-dimensional mandibular bone model consisting of approximately 1.4 million elements was constructed from sequential computer tomography (CT) images of a 14-year old female. Both teeth and bone were modeled with isoparametric voxel elements with Young's Modulus = 20 GPa and Poisson's ratio = 0.3. Both heads of the mandible were fixed allowing rotation and horizontal movement. Teeth were fixed vertically allowing horizontal movements. Incisor, right/left group, and right/left molar biting conditions were simulated. The locations and directions of muscles, and their forces were predicted from the CT images. Remodeling simulation was performed by 10 sets of finite element method analysis and reaction-diffusion remodeling simulation to obtain internal structure adapted to each loading condition. As a result, the major part of the corpus of the simulated mandibular bone showed similar internal structures under different biting conditions. Moreover, these simulated structures were satisfactorily similar to that of the real mandible. Computer simulation of three-dimensional bone structures based on CT images will be very useful for understanding the patho-physiological state of bone under various mechanical conditions, and may assist orthopedic doctors to predict the risk and efficacy of surgical therapies.
1277
Authors: Akiyuki Takahashi, Masahiro Arita, Masanori Kikuchi
Abstract: This paper describes the computer simulation of irradiation growths induced by neutron irradiations in zirconium using a combination of Molecular Dynamics (MD) and Kinetic Monte Carlo (KMC) methods. First, we performed the MD simulation of the displacement cascade on a defect cluster to study the interaction between the defect cluster and the displacement cascade. The MD simulations provide a lot of information on the amount of the defect production and the subsequent morphological change in the defect cluster. The results are used to make simple models that describe the nature of the displacement cascade overlap on the defect clusters. The models are then implemented into the KMC simulation code to extend the length- and time-scale of the simulation, which allows us to evaluate directly the defect cluster accumulations during a long-term irradiation. The irradiation growth strain resulting from the defect cluster accumulations is simply evaluated, and compared to an available experimental data. The comparison suggests that the displacement cascade overlap plays an important role on the irradiation growth, and, consequently, the KMC method with the simple models must be appropriate for the simulations of the irradiation growth.
889
Authors: Akiyuki Takahashi, Naoki Soneda, Masanori Kikuchi
Abstract: This paper describes a computer simulation of thermal ageing process in Fe-Cu alloy. In order to perform accurate numerical simulation, firstly, we make numerical models of the diffusion and dissociation of Cu and Cu-vacancy clusters. This modeling was performed with kinetic lattice Monte Carlo method, which allows us to perform long-time simulation of vacancy diffusion in Fe-Cu dilute alloy. The model is input to the kinetic Monte Carlo method, and then, we performed the kinetic Monte Carlo simulation of the thermal ageing in the Fe-Cu alloy. The results of the KMC simulations tell us that the our new models describes well the rate and kinetics of the diffusion and dissociation of Cu and Cu-vacancy clusters, and works well in the kinetic Monte Carlo simulations. Finally, we discussed the further application of these numerical models.
917
Authors: Akiyuki Takahashi, Mitsuru Kawanabe, Masanori Kikuchi
Abstract: Recent 3-Dimensional Atom Probe (3DAP) experimental observations showed the formation of spherical γ-precipitates at a central region of γ’ phases in nickel based superalloys. The γ precipitates should give a significant effect to the material strength. Whereat, in this work, we first developed a simulation technique for the investigation of the formation of γ-precipitates in γ’ phases, which is based on a combination of an Embedded Atom Method (EAM) interatomic potential designed for Molecular Dynamics (MD) and the kinetic lattice Monte Carlo (KLMC) method. As a demonstration of the KLMC simulation, the formation of the L12 structure was simulated from an initial state with randomly distributed aluminum atoms (25at.%Al). Finally, the γ’ phase with the L12 structure is formed in the entire simulation volume. To understand the fundamental mechanism of the formation of the L12 structures, the binding energies between a pair of aluminum atoms in a nickel single crystal were calculated using MD method. The result gave a clear picture of the mechanism. The stability of the γ-precipitate was also investigated using the MD method. Finally, the formation of γ-precipitates was simulated using the KLMC method. The dependence of the formation on the temperature condition is discussed.
815
Authors: Kazuhiro Suga, Koichi Minagawa, Masanori Kikuchi, Shigeru Aoki
Abstract: This study presents a mesh generation technique considering the measurement accuracy of the potential on an inverse analysis using the boundary element analysis. We evaluate the effects of the distance between layered rebar and corrosion size on measured potential distribution on the concrete surface, and then propose a technique to select reasonable and efficient size of boundary element. A numerical simulation demonstrates the validity and efficiency of the proposed technique.
1255
Authors: Kazuhiro Suga, Taro Moteki, Masanori Kikuchi
Abstract: This study evaluates effects of the diffusion layer thickness and the share stress on metal surface for the polarization curve under flow field on metal corrosion. We measure the polarization curves under the different diffusion boundary layer thickness and the wall share stress. Metal surface conditions are observed from microscopic and macroscopic view points to evaluate tendencty of corrosion and shape of corrosion product.
1261
Showing 1 to 10 of 53 Paper Titles