Papers by Author: Masatoshi Sakoda

Paper TitlePage

Authors: Seong Jin Joe, Tadashi Chida, Masatoshi Sakoda, Hidekatsu Nakamura, Muneyuki Tamura, N. Sato
Abstract: This study reports the effect of sulfuric acid concentration on chalcopyrite chemical leaching in very simple H2SO4 solution systems ranging from 23g/L to 30g/L, with 2.5% chalcopyrite concentrate at 30°C. Copper extraction from chalcopyrite increases with an increase in sulfuric acid concentration, e.g. 86%, 90% and 92% after 96 days at 23g/L, 25/L and 27g/L H2SO4 solution respectively. Sulfur element formed on the surface of chalcopyrite was very porous as the result of an electron probe microanalyzer (EPMA). Copper extraction, however, leveled out at 35% after 20 days when the sulfuric acid concentration was higher than 28g/L on 25g/L of chalcopyrite concentrate. Sulfur element was detected by X-ray analysis as only a leaching reaction product. The passivation may be caused by thick elemental surface formed on the surface of chalcopyrite.
Authors: Seong Jin Joe, Masatoshi Sakoda, Tadashi Chida, Yoshiharu Kida, Hidekatsu Nakamura, Muneyuki Tamura
Abstract: Bioleaching studies have been conducted to obtain bacteria having a high ability to dissolve copper from chalcopyrite. For these studies, samples of mine drainage water which contain high concentrations of copper or iron ions in several abandoned mines in Japan were used to inoculate enrichment cultures on 0.16 M ferrous iron in the absence of chalcopyrite concentrate. Afterwards, these were accumulated and supplied to shaking-flask bioleaching tests on chalcopyrite concentrate. Copper dissolution rates were measured in chalcopyrite leaching experiments and compared with those using cell-free ferrous/ferric media. The copper dissolution rate in ferrous sulphate medium was higher than that in ferric sulphate medium. Moreover, tests in the presence of bacteria showed even an higher copper dissolution rate.
Showing 1 to 2 of 2 Paper Titles