Papers by Author: Matthew Peebles

Paper TitlePage

Authors: Ming Bin Min, Matthew Peebles, Shen Hin Lim, Mike Duke, Chi Kit Au
Abstract: The demand for high accuracy on automated harvesters is getting higher. While system accuracy is lowered by vibration resulted when a robot with sensors and arms is running on the field. Applying suspension system onto these automated harvesters is a solution to reduce the vibration effects and assure required accuracy. This paper presents a model of the suspension system for a robotic asparagus harvester. The simulation results showed that the peak value of vibration was reduced to an acceptable level. Most importantly, the peak deflection of a vibrated platform was decreased to a required range as well. At the end of this paper, a conclusion is drawn. A suspension system is suggested to reduce vibration effects and improve the accuracy of both sensors and picking arms for mobile manipulators. In the future, this suspension system will be fabricated and installed onto a robotic asparagus harvester to validate this proposed model.
Authors: Matthew Peebles, Shen Hin Lim, Mike Duke, Chi Kit Au
Abstract: Advances in agricultural automation, coupled with a general decline of available labour hasgenerated interest in automated harvesting of various crops. Paramount to the success of such systemsis the development of accurate, robust detection technologies and localization strategies. This paperpresents an overview of sensor technologies used in the detection and localization of green aspara-gus spears for robotic harvesting. Tactile, photoelectric, machine vision and time-of-flight sensors areinvestigated and their applicability for use in robotic asparagus harvesting is evaluated. Investigationof previous asparagus harvesting devices has revealed that no such device has yet achieved commer-cial viability. It was identified that this is likely due to weaknesses in currently employed detectiontechnologies, namely slow response times, high sensitivity to changes in ambient lighting conditionsand requirement for frequent manual calibration. Of the sensor technologies investigated it was foundthat time-of-flight cameras, such as the Microsoft Kinect V2 are the most feasible for the detectionof asparagus spears for robotic harvesting. It was concluded that further research would be conductedinto the application of such sensors into a commercially viable harvester.
Showing 1 to 2 of 2 Paper Titles