Papers by Author: Mok Soon Kim

Paper TitlePage

Authors: Taek Kyun Jung, T.J. Sung, Mok Soon Kim, Won Yong Kim
Abstract: Al-8Fe-2Mo-2V-1Zr alloy powders were prepared by gas atomization and melt spinning method. In melt spinning technique, melt spun ribbons were pulverized by a speed rotor mill to make a powder shape. In order to produce a bulk form, powders were canned and hot extruded in the extrusion ratio of 25 to 1 at 693K. For the gas atomization and hot extrusion processed bulk material, equiaxed grains with the average size of 400 nm and finely distributed dispersoids with their particle sizes ranging from 50nm to 200nm were observed to display a characteristic nano-structured feature over the entire region. For the melt spun and hot extrusion processed alloy, a refined microstructural feature consisting of equiaxed grains with the average size of 200 nm and fine dispersoids with their particle sizes under 50 nm appeared to exhibit a difference in microstructure. Yield strength of the latter alloy was higher than that for the former alloy up to elevated temperatures. The maximum yield strength was measured to about 800 MPa at room temperature for the latter alloy.
Authors: Gyu-Sam Shim, Mok Soon Kim, Won Yong Kim, Hiroshi Yamagata
Authors: Jae Wan Song, Hee Taek Lim, Jeong Whan Han, Mok Soon Kim, Sun Keun Hwang
Abstract: It is well known that magnesium alloys have difficulties in room temperature formability because of their HCP structure. As a basic approach to enhance a cold formability, a new combination process including an extrusion followed by a cold equal channel angular pressing (ECAP) was attempted. ECAP die has an inner die corner angle of 135 degree, the fillet angle of 45 degree and thickness of 5mm. A finite element analysis with a three-dimensional thermo-coupled elasto-plastic model was also carried out to understand the change of stress and strain during ECAP. Experiments showed that the AZ31 alloy, which is extruded at a ratio of 20 and is heat-treated at 350°C, was successful in a cold ECAP. From the simulated results, it was found that the effective strain gradually decreased from the inner die side (0.533) to the outer die side. This was confirmed by the analytical analysis via von Mises criterion. Furthermore, it also matched well with the experiments, which showed a uniform shear deformation band. It was also interesting to note that compressive yield strength was drastically increased, which is caused by the occurrence of numerous twins spread across the materials during a cold ECAP.
Authors: S.J. Hwang, Mok Soon Kim, S.Y. Jung, Seock Sam Kim, Myung Hoon Oh
Authors: Dong Suk Lee, Taek Kyun Jung, Mok Soon Kim, Won Yong Kim
Abstract: Two atomized alloy powders, those chemical compositions are Al-10Si-5Fe-1Zr and Al- 10Si-5Fe-4Cu-2Mg-1Zr, were pre-compacted by cold pressing with 350MPa and subsequently hot forged at temperatures ranging from 653K to 845K and at an initial strain rate of 10-2/s in order to produce bulk cylindrical type alloys with the diameter of 10 mm. The addition of Cu and Mg into the present alloy causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, Al2Cu and Al2CuMg intermetallics appeared to display the alloying effect additionally. The volume fraction of intermetallic dispersiods increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.
Authors: Jun Kyung Sung, Mok Soon Kim, Won Yong Kim, Akihiko Chiba
Abstract: A recrystallized Co-Ni-Cr-Mo based superalloy was produced by cold working of 72% and subsequent recrystallization heat treatment. Microstructural observation revealed that a full recrystallization of the cold-worked alloy occured when heat treatment was performed at and above 1273K for 1h. So that, recrystallization heat treatment was carried out in a temperature range from 1273K to 1473K for 1h~24h, by which the average grain size was controlled to 28µm~238µm. Tensile tests were carried out from room temperature (RT) to 1073K in order to understand the effect of grain size on the mechanical properties of the Co-Ni-Cr-Mo based superalloy. At RT and 943K, yield strength, tensile strength and elongation of the recrystallized alloy were improved with decreasing grain size. The alloy having a grain size less than 42µm exhibited a steady-state flow behavior in the true stress-true strain curve at 943K. However, the alloy having a grain size of 28µm showed lower yield strength than that of 42µm at 1073K. It was found that the steady state flow is closely related to the occurrence of {111}<112> deformation twinning in the Co-Ni-Cr-Mo based superalloy.
Authors: Won Yong Kim, Han Sol Kim, Shae K. Kim, Tae Yeub Ra, Mok Soon Kim
Abstract: Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb5Si3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb5Si3. At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure.
Authors: Won Yong Kim, Jae Sung Park, Mok Soon Kim
Abstract: Mechanical properties of a nano-structured Al-8Fe-2Mo-2V-1Zr alloy produced by spray forming and subsequent hot-extrusion at 420°C were investigated in terms of tensile test as a function of temperature. Warm rolling was adapted as an additional process to expect further refinement in microstructure. Well-defined equiaxed grain structure and finely distributed dispersoids with nano-scale in particle size were observed in the spray formed and hot extruded sample (as-received sample). The average grain size and particle size were measured to 500 nm and 50 nm, respectively. While it was found that warm rolling gives rise to precipitate fine dispersoids less than 10 nm without influencing the grain size of matrix phase, in the temperature range of RT∼150°C, distinguishable changes in ultimate tensile strength were not found between the as-received and warm-rolled samples. At elevated temperatures ranging from 350 to 550°C, warm-rolled sample showed a higher value of elongation than as-received one although similar values of elongation were observed between two samples at temperatures lower than 350°C.
Authors: Taek Kyun Jung, Hyouk Chon Kwon, Sung Chul Lim, Young Sup Lee, Mok Soon Kim
Abstract: We investigated about the effects of core material(Pure Al, Al3003) on extrudability such as the maximum extrusion ratio and the bonding strength of Copper Clad Aluminum(CCA) by indirect extrusion. As a results of this experiment, the maximum extrusion ratio of Cu/Al3003 was 38, which was larger than 21.39 of Cu/Al(Cu/pure Al). It was because that the difference of flow stress between copper as the sheath material and Al3003 as the core material was smaller than that of between copper and pure aluminum under the same extrusion temperature of 623K. The bonding strength gradually increased when the extrusion ratio increased, on the other hand, the bonding strength of Cu/Al3003 was higher than that of Cu/Al under same extrusion conditions. The diffusion layer thickness that affected bonding strength was not affected by the kind of core material, but it gradually increased when the extrusion ratio increased. It was thought that Cu/Al3003 had a more intimate diffusion layer than Cu/Al had because the extrusion pressure of Cu/Al3003 was higher than that of Cu/Al under the same extrusion conditions.
Showing 1 to 10 of 42 Paper Titles