Papers by Author: Nobuhiro Tsuji

Paper TitlePage

Authors: Margarita Slámová, Petr Homola, P. Sláma, Miroslav Karlík, Miroslav Cieslar, Yoshitatsu Ohara, Nobuhiro Tsuji
Abstract: Accumulative Roll Bonding (ARB) is a technique of grain refinement by severe plastic deformation, which involves multiple repetitions of surface treatment, stacking, rolling, and cutting. The rolling with 50% reduction in thickness bonds the sheets. After several cycles, ultrafine-grained (UFG) materials are produced. Since ARB enables the production of large amounts of UFG materials, its adoption into industrial practice is favoured. ARB has been successfully used for preparation of UFG sheets from different ingot cast aluminium alloys. Twin-roll casting (TRC) is a cost and energy effective method for manufacturing aluminium sheets. Fine particles and small grain size are intrinsic for TRC sheets making them good starting materials for ARB. The paper presents the results of a research aimed at investigating the feasibility of ARB processing of three TRC alloys, AA8006, AA8011 and AA5754, at ambient temperature. The microstructure and properties of the ARB were investigated by means of light and transmission electron microscopy and hardness measurements. AA8006 specimens were ARB processed without any problems. Sound sheets of AA8011 alloy were also obtained even after 8 cycles of ARB. The AA5754 alloy suffered from severe edge and notch cracking since the first cycle. The work hardening of AA8006 alloy saturated after the 3rd cycle, whereas the hardness of AA5754 alloy increased steadily up to the 5th cycle. Monotonous increase in strength up to 280 MPa was observed in the ARB processed AA8011 alloy.
Authors: Naoki Takata, Kousuke Yamada, Kenichi Ikeda, Fuyuki Yoshida, Hideharu Nakashima, Nobuhiro Tsuji
Abstract: The recrystallization behavior and texture development in copper accumulative roll-bonding (ARB) processed by various cycles (2, 4 and 6 cycle) were studied by differential scanning calorimetry (DSC) analysis and SEM/EBSP method. The exothermic peaks caused by recrystallization appeared at 210 ~ 253 􀍠 in each sample. The peak positions shifted to lower temperature as the number of ARB cycles increased. This result indicated that the evolution of finer microstructure with increasing number of the ARB cycles enhanced the occurrence of recrystallization at lower temperature. The stored energy calculated from the DSC curve of the ARB processed copper increased with the increasing strains. During an annealing, the preferential growth of cube-oriented grains ({100}<001>) occurred in each sample. The recystallization behavior of ARB processed copper having low stacking fault energies was distinguished from that of so-called “recovery type” materials, i.e. aluminum and low carbon steels, which shows rather continuous changes in microstructure during annealing. The accumulated strains provided the driving force for the preferential growth, which was the same mechanism as the preferential growth in normally rolled copper. The sharpest cube texture developed in ARB processed copper by 4 cycles. The difference of cube texture development between 2 cycles and 4 cycles was caused by the distribution of cube-oriented regions which corresponded to the nucleation sites of recrystallized grains before annealing. More nanocystalline layers in the vicinity of bonded interfaces were distributed in ARB processed copper by 6 cycles than 4cycles. The nanocystalline structure could grow faster than the cube-oriented grains and led to the inhibition of sharp cube texture in the ARB processed copper by 6 cycles.
Authors: Yoritoshi Minamino, Yuichiro Koizumi, Nobuhiro Tsuji, Naoko Hirohata, Kiyoshi Mizuuchi, Yoshihira Ohkanda
Abstract: Three kinds of bulk nanocrystalline Fe-24at%Al-Xat%C (X=1,2,4) alloy were produced from Fe and Al powders with addition of methanol by MA with subsequent SPS at 1273K under 64MPa. Their microstructure and mechanical properties were investigated. The compacts have the relative densities of 99.97% (1at%C) to 99.6% (4at%C). The structure of compacts with 1at%C is composed of Fe3Al grains of 1.5µm in diameter and nano k-carbides (Fe3AlC0.5) precipitates, while those of compacts with 2 and 4at%C are composed of nanocrystalline Fe3Al of about 80nm in diameter, nano k-carbides and a-grains of about 1µm in diameter. These structures have the good thermal stability, maintaining the nanostructure even at 973K. The mechanical properties of these compacts were measured by compression tests at R.T. to 973K. The compacts with 1at%C and 2at%C of this work perform the superior mechanical properties (e.g. yield strength of 2.15GPa and rupture strain of 0.14 for compact with 2at%C at R.T.) when compared with the ordinary Fe3Al casting (e.g. 380MPa and 0.12). They also exhibit no environmental embrittlement, which is one of fatal problems for the ordinary Fe3Al mateials.
Authors: Takuro Nakamura, Hiromoto Kitahara, Jung Goo Lee, Nobuhiro Tsuji
Abstract: Pure Al (99%) and pure Fe (99.5%) sheets were mutually stacked and severely deformed up to equivalent strain of 16 by the accumulative roll bonding (ARB) process in an attempt to achieve bulk mechanical alloying. The deformation was carried out at RT. The Al/Fe sheets ARB processed by 1 cycle showed a number of shear bands penetrating the stacked layers. The Fe layers, which were harder than the Al layers, were subdivided by the shear bands into diamond-shaped regions. Dissolution of Fe into Al was observed and a supersaturated solid solution was formed in the specimen ARB processed by 10 cycles. It was also found that local amorphization occurred at interface regions via formation of Al5Fe2 intermetallic compound.
Authors: Nobuhiro Tsuji, S. Kato, Satoru Ohsaki, Kazuhiro Hono, Yoritoshi Minamino
Authors: Nobuhiro Tsuji, Yoshiaki Ito, H. Nakashima, Fusahito Yoshida, Yoritoshi Minamino
Authors: Yuichiro Koizumi, Yohei Sakakibara, Yoritoshi Minamino, Nobuhiro Tsuji
Authors: Yoritoshi Minamino, Nobuhiro Tsuji, Yuichiro Koizumi, Y. Nakamizo, M. Sato, Toshiya Shibayanagi, Masaaki Naka
Abstract: The effect of near surface-ultrafine grain (NSUFG) layer with grain size of about 90nm on the solid reaction between Ti-added ultra-low carbon interstitial free steel sheet and electroplated zinc layer (ZP) was basically investigated at 473K and 573K, in comparison with the reactions of the coarse grains IF steel sheet (CG-IF) and the ZP. The NSUFG structure dramatically changes the reactions between ZP and IF steel, as follows; (1) the incubation times for the formation of reaction layers, pseudo-z-phase, are quite shorter for the NSUFG/ZP reactions than the CG/ZP ones, (2) in the early stage of annealing the former has the smooth interfaces of pseudo-z-phase layers but the latter has wavier ones like a stone wall, (3) the thickness of the pseudo-z-phase layer of the former is thicker than that of the latter, (4) some cracks are observed in NSUFG layers while no crack in coarse grain IF steel, and (5) the subsequent layer appears in the reaction between pseudo-z-phase and NSUFG layers former after long annealing by the blast-like break of the interface.
Authors: Naoya Kamikawa, X. Huang, Nobuhiro Tsuji, Niels Hansen, Yoritoshi Minamino
Abstract: High purity aluminum (99.99% purity) was severely deformed by accumulative roll-bonding (ARB) to a thickness reduction of 98.4%. Quantitative microstructural characterization of the deformed sample was carried out by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD scans at various locations from the sample surface to the mid-thickness revealed a fairly uniform and equiaxed structure, although a small fraction of an elongated structure parallel to rolling direction (RD) was also observed. Misorientation angle distributions for grain boundaries of which misorientation angle was larger than 2° were evaluated by EBSD, showing that more than 70% of the boundaries were high-angle ones (>15°). More detailed structural features, such as low-angle boundaries (<2°) and dislocations between boundaries were characterized by TEM. The TEM results indicated that about 17% of the boundaries have misorientations <2° and that the fraction of high-angle boundaries is about 52%. An estimated yield strength based on the structural parameters determined by TEM was in good agreement with the measured value.
Authors: Nobuhiro Tsuji, Naoya Kamikawa, Yoritoshi Minamino
Abstract: Ultra low-carbon interstitial free (IF) steel having ferrite (b.c.c.) single phase was deformed to various equivalent strains ranging from 0.8 to 5.6 by the accumulative roll bonding (ARB) process at 500°C. The microstructure and crystallographic feature of the deformed specimens were characterized mainly by FE-SEM/EBSD analysis. Grain subdivision during the plastic deformation up to very high strain was clarified quantitatively. After heavy deformation above 4.0 of strain, the specimens showed the lamellar boundary structure uniformly, in which the mean spacing of the lamellar boundaries was about 200nm and more than 80% of the boundaries were high-angle ones. Annealing behavior of the ARB processed IF steel strongly depended on the strain. The specimens deformed to medium strains exhibited discontinuous recrystallization characterized by nucleation and growth, while the specimens deformed above strain of 4.0 showed continuous recrystallization. The recrystallization behaviors are discussed on the basis of the microstructural and crystallographic parameters quantitatively measured in the as-deformed samples.
Showing 1 to 10 of 40 Paper Titles