Papers by Author: Qing Lei Yu

Paper TitlePage

Authors: Chao Zheng, Tian Hong Yang, Qing Lei Yu, Peng Hai Zhang
Abstract: Gas outburst has been a major disaster in high gas mine. Flow law of gas in coal seam was studied, and gas drainage measures were proposed were extraordinarily useful for mine safety and rational use of gas. Finite element numerical method was applied to study changing law of gas pressure before and after the high-pressure water injection and damage deformation of coal under high-pressure water based on fluid-solid coupling and gas-solid coupling and damage theory. This research shows that: (1) a damage area was generated in coal seam under high-pressure water injection. Range of the damage area increase rapidly at the start of water injection and gradually slow down with the passage of time, eventually be more stable. (2) The permeability of rock mass of coal under high-pressure water injection. (3) High-pressure water injection had significant effect on gas drainage in a certain area. It provided a theoretical basis for selecting reasonable design programs to product gas by high-pressure water injection technology.
Authors: Qing Lei Yu, Tian Hong Yang, Wan Cheng Zhu, Chao Zheng
Abstract: Concrete is a heterogeneous composite material. The heterogeneity consists of the distribution and shape of aggregate, interfacial transition zone (ITZ) and the inhomogeneity of each component materials. The key in numerical models for simulating the fracture behaviors is how to describe the heterogeneity actually. In this paper, at meso-scale level general-purposed digital image processing technologies are utilized to characterize the heterogeneity resulting from the shape and distribution of aggregates and ITZ, and at micro-scale level, a statistical method (e.g. Weibull distribution) is used to describe the heterogeneity of each phase. And then a multi-scale numerical model based on digital image is proposed to simulate fracturing process of concrete under loading condition. The proposed model can take the actual distribution and shape of aggregate into account. The fracturing process of concrete in uniaxial compressive tests is simulated by using the model. The results show that the shape of aggregates plays an important role in stress distributions to influence the damage evolution during loading. The proposed model is capable of capturing the complete failure process of concrete materials that includes the initiation, propagation and coalescence of microcracks as well as cracking pattern associated with different loading stages, which is a new tool to study the fracturing behaviors of concrete in more detail. Key words: digital image; heterogeneity characterization; fracturing process; concrete
Authors: Pei Feng Sun, Tian Hong Yang, Qing Lei Yu, Wei Shen
Abstract: With ShapeMetriX3D rock non-contact measuring technology, structural planes’ distribution of MiaoGou iron mine slope is got. Then, the Mont-Carlo method is used to create equivalent fracture network, with that scale effects and anisotropic properties of rock mass are studied by RFPA2D, considering different scales and directions in statistical window. The results show that both deformation modulus and the strength of the rock mass’s REV are 2.5 m. Furthermore, the strength ratio of filler to rock (K) and the strength of the rock mass fit the logarithmic relationship in rough, while the elastic modulus ratio of filler to rock (M) and the strength of the rock mass fit the linear relationship in rough. The strength of no joints rock mass is much stronger than three times of the strength of jointed rock mass, but the rock mass elastic modulus of no joints is less than 1.6 times of the elastic modulus of jointed rock mass. The research results are directive and have reference value for the study of anisotropy mechanical parameters of rock mass engineering.
Authors: Tian Hong Yang, Hong Lei Liu, Qing Lei Yu, Shi Kuo Chen
Abstract: first of all, this paper intensive studies the hydraulic fracturing mechanism of heterogeneous material resultant from the seepage – damage coupling, based on which, the coupled seepage and damage effects during hydraulic fracturing is investigated, and the difficulties of hydraulic fracturing study are how to determine failure modes and breakdown pressure. By using numerically testing method, the mechanical mechanism of hydraulic fracturing under asymmetric distribution of pore pressure with three holes, including fracture patterns, stress flied distribution, initial fracturing pressure and breakdown pressure, was studied by using the FSD model. According to the results of this research, crack extension direction of hydraulic fracturing is influenced not only by the local pore pressure around crack tip, but also by the gradient distribution of macro pore water pressure. The fracturing direction always propagates towards the regions of higher local pore pressure and breakdown pressure decreases with the increasing of local pore pressure. These results are well aggress with the results in the experiments. This research has important theoretical and engineering value. In engineering practice, we can use the porous asymmetric hydraulic fracturing technology to control the direction of crack propagation. Keywords: hydraulic fracturing; numerical simulation; heterogeneous material; asymmetrical
Showing 1 to 4 of 4 Paper Titles