Papers by Author: Salvatore di Franco

Paper TitlePage

Authors: Antonella Sciuto, Fabrizio Roccaforte, Salvatore di Franco, Vito Raineri, S.F. Liotta, Sergio Billotta, Giovanni Bonanno, Massimiliano Belluso
Abstract: The fabrication of high sensitive diodes array is very attractive for spectroscopic and astronomical UV imaging applications, particularly when visible light rejection is required. Wide band gap materials are excellent candidates for UV “visible blind” detection. In this paper, we demonstrate an array of Schottky UV-diodes on 4H-SiC with a single pixel area of about 1.44 mm2 and a total area of about 29 mm2. The Schottky photodiodes are based on the pinch-off surface effect, the front electrode being an interdigit Ni2Si contact that allows the direct light exposure of the optically active device area. For the proposed array, the optically active area is about the 48 % of total area. The single pixel dark current was below 0.1 nA up to –50 V and a fabrication yield of about 90 % was observed. The external quantum efficiency of the proposed array exhibits a peak of 45 % at the 289 nm wavelength and a visible rejection ratio > 4 ×103.
Authors: Emanuela Schilirò, Salvatore di Franco, Patrick Fiorenza, Corrado Bongiorno, Hassan Gargouri, Mario Saggio, Raffaella Lo Nigro, Fabrizio Roccaforte
Abstract: This work reports on the growth and characterization of Al2O3 films on 4H-SiC, by Plasma Enhanced-Atomic Layer Deposition (PE-ALD). Different techniques were used to investigate the morphological, structural and electrical features of the Al2O3 films, both with and without the presence of a thin SiO2 layer, thermally grown on the 4H-SiC before ALD. Capacitance-voltage measurements on MOS structures resulted in a higher dielectric constant (ε~8.4) for the Al2O3/SiO2/SiC stack, with respect to that of the Al2O3/SiC sample (ε~ 6.7). Moreover, Current density-Electric Field measurements demonstrated a reduction of the leakage current and an improvement of the breakdown behaviour in the presence of the interfacial thermally grown SiO2. Basing on these preliminary results, possible applications of ALD-Al2O3 as gate insulator in 4H-SiC MOSFETs can be envisaged.
Authors: Marilena Vivona, Giuseppe Greco, Salvatore di Franco, Filippo Giannazzo, Fabrizio Roccaforte, Alessia Frazzetto, Simone Rascunà, Edoardo Zanetti, Alfio Guarnera, Mario Saggio
Abstract: The knowledge of the temperature behavior of Ohmic contacts is an important issue to understand the device operation. This work reports an electrical characterization as a function of the temperature carried out on nickel silicide (Ni2Si) Ohmic contacts, used both for n-type and p-type implanted 4H-SiC layers. The temperature dependence of the specific contact resistance suggested that a thermionic field emission mechanism dominates the current transport for contacts on p-type material, whereas a current transport by tunneling is likely occurring in the contacts on n-type implanted SiC. Furthermore, from the temperature dependence of the electrical characteristics, the activation energies for Al and P dopants were determined, resulting of 145 meV and 35 meV, respectively. The thermal stability of the electrical parameters has been demonstrated upon a long-term (up to ~100 hours) cycling in the temperature range 200-400°C.
Authors: Francesco La Via, Fabrizio Roccaforte, Salvatore di Franco, Vito Raineri, Francesco Moscatelli, Andrea Scorzoni, G.C. Cardinali
Authors: Ming Hung Weng, Fabrizio Roccaforte, Filippo Giannazzo, Salvatore di Franco, Corrado Bongiorno, Edoardo Zanetti, Alfonso Ruggiero, Mario Saggio, Vito Raineri
Abstract: This paper reports a detailed study of the electrical activation and the surface morphology of 4H-SiC implanted with different doping ions (P for n-type doping and Al for p-type doping) and annealed at high temperature (1650–1700 °C) under different surface conditions (with or without a graphite capping layer). The combined use of atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning capacitance microscopy (SCM) allowed to clarify the crucial role played by the implant damage both in evolution of 4H-SiC surface roughness and in the electrical activation of dopants after annealing. The high density of broken bonds by the implant makes surface atoms highly mobile and a peculiar step bunching on the surface is formed during high temperature annealing. This roughness can be minimized by using a capping layer. Furthermore, residual lattice defects or precipitates were found in high dose implanted layers even after high temperature annealing. Those defects adversely affect the electrical activation, especially in the case of Al implantation. Finally, the electrical properties of Ni and Ti/Al alloy contacts on n-type and p-type implanted regions of 4H-SiC were studied. Ohmic behavior was observed for contacts on the P implanted area, whilst high resistivity was obtained in the Al implanted layer. Results showed a correlation of the electrical behavior of contacts with surface morphology, electrical activation and structural defects in ion-implanted, particularly, Al doped layer of 4H-SiC.
Authors: Ming Hung Weng, Fabrizio Roccaforte, Filippo Giannazzo, Salvatore di Franco, Corrado Bongiorno, Mario Saggio, Vito Raineri
Abstract: This paper reports on the electrical activation and structural analysis of Al implanted 4H-SiC. The evolution of the implant damage during high temperature (1650 – 1700 °C) annealing results in the presence of extended defects and precipitates, whose density and depth distribution in the implanted sheet was accurately studied for two different ion fluences (1.31014 and 1.31015 cm-2) by transmission electron microscopy. Furthermore, the profiles of electrically active Al were determined by scanning capacitance microscopy. Only a limited electrical activation (10%) was measured for both fluences in the samples annealed without a capping layer. The use of a graphite capping layer to protect the surface during annealing showed a beneficial effect, yielding both a reduced surface roughness and an increased electrical activation (20% for the highest fluence and 30% for the lowest one) with respect to samples annealed without the capping layer.
Authors: Francesco La Via, Fabrizio Roccaforte, Salvatore di Franco, Alfonso Ruggiero, L. Neri, Ricardo Reitano, Lucia Calcagno, Gaetano Foti, Marco Mauceri, Stefano Leone, Giuseppe Pistone, Giuseppe Abbondanza, Gian Luca Valente, Danilo Crippa
Abstract: The effects of the Si/H2 ratio on the growth of the epitaxial layer and on the epitaxial defects was studied in detail. A large increase of the growth rate has been observed with the increase of the silicon flux in the CVD reactor. Close to a Si/H2 ratio of 0.05 % silicon nucleation in the gas phase occurs producing a great amount of silicon particles that precipitate on the wafers. The epitaxial layers grown with a Si/H2 ratio of 0.03% show a low defect density and a low leakage current of the Schottky diodes realized on these wafers. For these diodes the DLTS spectra show thepresence of several peaks at 0.14, 0.75, 1.36 and 1.43 eV. For epitaxial layers grown with higher values of the Si/H2 ratio and then with an higher growth rate, the leakage current of the Schottky diodes increases considerably.
Authors: Fabrizio Roccaforte, Ferdinando Iucolano, Filippo Giannazzo, Salvatore di Franco, Valeria Puglisi, Vito Raineri
Abstract: In this work, the electrical properties of Pt/GaN Schottky contacts were studied. The temperature dependence of the barrier height and ideality factor, and the low experimental value of the Richardson’s constant, were discussed considering the formation of an inhomogenous Schottky barrier. Local current-voltage measurements on Pt/GaN contact, performed with a conductive atomic force microscope, demonstrated a Gaussian distribution of the local barrier height values and allowed to monitor the degree of inhomogeneity of the barrier. The presence of defects, terminating on the bare GaN surface, was correlated with the electrical behavior of the inhomogeneous barrier.
Authors: Ferdinando Iucolano, Fabrizio Roccaforte, Filippo Giannazzo, Salvatore di Franco, Giuseppe Moschetti, Valeria Puglisi, Vito Raineri
Abstract: The recent improvement of GaN material quality launched new perspective for its application in power devices. However, ion-implanted guard-ring edge terminations, necessary to improve the breakdown voltage, are not well developed as in SiC technology. Indeed, the effects of high-temperature annealing, required for the electrical activation of the implanted species in GaN, on the electrical behaviour of Schottky contact was not reported. In this work, the influence of high temperature annealing (1150-1200°C) on the surface morphology of GaN and on the electrical behaviour of Schottky contact was studied. Although the morphology of GaN surface did not substantially change after annealing, a worsening of the electrical behaviour of Schottky contact was observed. This latter was ascribed to the formation of a high density of interface states after annealing.
Authors: Francesco La Via, G. Galvagno, A. Firrincieli, Fabrizio Roccaforte, Salvatore di Franco, Alfonso Ruggiero, Milo Barbera, Ricardo Reitano, Paolo Musumeci, Lucia Calcagno, Gaetano Foti, Marco Mauceri, Stefano Leone, Giuseppe Pistone, F. Portuese, Giuseppe Abbondanza, Giovanni Abagnale, Gian Luca Valente, Danilo Crippa
Abstract: The growth rate of 4H-SiC epi layers has been increased by a factor 3 (up to 18μm/h) with respect to the standard process with the introduction of HCl in the deposition chamber. The epitaxial layers grown with the addition of HCl have been characterized by electrical, optical and structural characterization methods. An optimized process without the addition of HCl is reported for comparison. The Schottky diodes, manufactured on the epitaxial layer grown with the addition of HCl at 1600 °C, have electrical characteristics comparable with the standard epitaxial process with the advantage of an epitaxial growth rate three times higher.
Showing 1 to 10 of 35 Paper Titles