Papers by Author: Seung Hoon Nahm

Paper TitlePage

Authors: Un Bong Baek, Jong Seo Park, In Hyun Chung, Seung Hoon Nahm, Young Hwa Ma, Yong Yun Lee
Abstract: The high cycle fatigue properties of two kinds of wrought Al 2519 alloys without and with scandium of 0.10% were investigated. The fatigue strength was determined at R = 0.1 under constant amplitude loading conditions in air. The alloy with scandium of 0.10% showed a little lower tensile yield strength and higher fatigue strength values. The fine grained Al-0.10Sc alloy exhibited a higher resistance against fatigue crack nucleation despite the lower yield stress in comparison to the coarse grained Al 2519 alloy. The results can be explained mainly with the microstructural differences between both alloys. This results are due to the presence of coherent Al3 (Sc, Zr) precipitates and a very fine subgrain structure.
Authors: Un Bong Baek, Jong Seo Park, In Hyun Chung, Tae Won Park, Seung Hoon Nahm
Abstract: Al alloy is used extensively in several fields because specific strength is good and workability is superior. It is known that If Sc is added to Al alloy, strength is increased and re-crystallization temperature rises because microstructure becomes fine. The high cycle fatigue properties of four kinds of Al-Mg-Si alloys without and with only scandium of 0.20 % or with both scandium(Sc) of 0.20 % and zirconium(Zr) of 0.12% were investigated. The fatigue strength was determined at R = -1.0 under constant amplitude loading conditions in air. The alloy with scandium of 0.20 % showed a little higher fatigue strength values. The alloy with 0.20 % Sc and 0.12 % Zr showed highest tensile yield strength and highest fatigue strength. The fine grained Al 6061+0.20Sc+0.12Zr alloy exhibited a higher resistance against fatigue crack nucleation in comparison to the coarse grained Al 6061 alloy. The results can be explained mainly with the micro-structural differences among four alloys. This results are due to the presence of coherent Al3 (Sc, Zr) precipitates and a very fine sub-grain structure.
Authors: Un Bong Baek, Jong Seo Park, Seung Hoon Nahm, Hyuck Mo Lee
Abstract: In spite of frequent defect in industrial boilers, life assessment or diagnostic method for them has not been studied. In this research, SB410 carbon steel used in industrial boilers is simulated with artificial aging heat treatment. To do qualitative life assessment, differences in micro-structures and hardness of SB410 by the degradation time are studied. In addition, variation in material properties by aging was observed with the tensile test at room temperature and 179 °C and changes in ductile to brittle transition temperature was observed with the charpy impact test performed at several test temperature.
Authors: Seung Hoon Nahm, Young Joo Kim, Jeong Min Kim, Dong Jin Yoon
Abstract: When the shape memory alloy(SMA) completely consists of austenite phase that shows the super-elastic property, if the external energies, such as stress, crack, propagation and lamination, etc. are increased in this alloy until the austenite phase was transformed into the martensite phase, they are enough to change the mean free path of electrons correlated with the electrical resistivity of materials in the microscopic point of view. On the basis of the above concept, we carried out the feasible study for SMA wire as a strain sensor using the super-elastic property of SMA. The SMA wires of diameter 41 ㎛ were utilized for a sensor material. The relationship between electrical resistivity and tensile properties of the Ni-Ti based SMA wires during tensile loading was investigated. Since the strain is very sensitive to the minute change of electrical resistance of SMA wire, it is possible to use the SMA wire as a sensor of such physical quantities. In the study, the possibility for the application of Ni-Ti SMA wire as a sensor was investigated. The sensing system was able to measure the strain up to 6 % with 0.22 % measuring error. The sensitivity described by the ratio of electrical resistivity showed 0.00005.
Authors: Seung Hoon Nahm, Jeong Min Kim, Jong Seo Park, Kwang Min Yu, Dong Kyun Kim, Am Kee Kim, Dong Jin Kim
Authors: Jong Seo Park, Un Bong Baek, Jeong Min Kim, Seung Hoon Nahm, Bong Young Ahn
Abstract: Several nondestructive evaluation methods were attempted for the estimation of the creep damage of degraded 2.25Cr-1Mo steel. The specimens of three different aging periods were prepared by an isothermal heat treatment at 430°C, 482°C, and 515°C. The effect of probe configuration on the electrical resistivity was studied. Single configuration method and dual-configuration method were utilized for measuring electrical resistivity. The electrical resistivity was determined by a standard DC four-point probe method at 24±0.5°C. Indentation test, magnetic characteristics test and ultrasonic test were carried out to investigate the correlation between the major characteristics and aging parameter. Unlike the electrical resistivity characteristics, ultrasonic attenuation coefficient and indentation characteristics did not show a relation to Larson-Miller parameter. However, a correlation between the electrical resistivity and aging parameter was identified, which allows one to estimate the extent of material degradation.
Authors: Yun Hee Lee, Jong Seo Park, Seung Hoon Nahm, Yong Hak Huh
Abstract: A nondestructive rod compression has been proposed as a new strength characterizing technique for in-service components. Using electrical discharge machining, milling machining, and stamping, it was possible to machine small rods, typically about 0.5 mm in both diameter and height on the target surface. Static compressions of the rods were carried out using a flat punch and their deformation behaviors were recorded as load-displacement curves. Referring to initial dimension of the rods, engineering stress-strain curves implying the yield strengths were calculated from the deformation curves. Surface yield strengths from the rod compressions were directly compared with reference compression results and their slight discrepancies were discussed from the influences of pre-deformation and damage of the rod and additive compliance of the base.
Authors: Dong Su Bae, Sang Ll Lee, Seung Hoon Nahm, J.W. Choi, H. Takahashi
Abstract: The high Mn-Cr austenitic steel for structure material of nuclear and/or fusion reactors from the point of view of the reduced radio-activation has been irradiated by using three irradiation modes of electron-beam irradiation, electron-beam irradiation after He-injection and electron/He+-ion dual-beam irradiation in 1250kV high voltage electron microscope (HVEM) connected with an ion accelerators to study the effect of He-injection on irradiation damage. Irradiation-induced segregation analyses were carried out by an energy dispersive X-ray analyzer (EDX) in a 200kV FE-TEM with beam diameter of about 0.5nm. Void formation was not observed in each irradiation condition. Grain boundary migration was observed in the case of electron/He+-ion dual-beam irradiation. Irradiation-induced segregations of Cr and Mn at grain boundary were observed in each irradiation condition. The amounts of Cr and Mn segregation decreased in the cases of electron-beam irradiation after He-injection compared with other irradiation conditions.
Authors: Seung Hoon Nahm, Jong Seo Park, In Hyun Chung, Kwon Sang Ryu, Am Kee Kim
Abstract: Many researchers have been interested in the nondestructive measurement methods for examining the microstructural changes and components damage in order to assure the safe operation of steel structure. It has been recognized that the techniques based on magnetic measurement offered a great potential because of high susceptibility to the change of several metallurgical factors. In this study, the effect of isothermal heat treatments, which simulate the microstructural changes observed in reactor vessel material at the service temperature, on the magnetic properties was investigated. 2.25Cr-1Mo steel specimens with several different kinds of aging were prepared by an isothermal heat treatment at three different temperature levels. Magnetic property such as coercive force was measured. The coercive force at room temperature monotonously increased with the extent of degradation of the material. The correlation between the measured magnetic property and the mechanical properties was studied. In addition, the applicability of magnetic properties measurements to the evaluation for toughness degradation of reactor vessel was discussed.
Authors: Dae Hyun Ryu, Seung Hoon Nahm
Abstract: A crack detection system was developed to observe growth behavior of fatigue crack using the digital image processing techniques. The crack propagation behavior was observed successfully by combining block matching method and inclination threshold value method. The data obtained with this new system agreed with the existent data and the standard deviation was 0.03%. If the proposed method is utilized to develop a crack monitoring system to observe the crack growth behavior automatically, the time and effort needed for a fatigue test could be dramatically reduced. And also it will be easier to estimate and to manage efficiently the safety and residual life of industrial facilities.
Showing 1 to 10 of 17 Paper Titles