Papers by Author: Takeshi Izumi

Paper TitlePage

Authors: Toshio Narita, Takeshi Izumi, Takumi Nishimoto, Yoshimitsu Shibata, Kemas Zaini Thosin, Shigenari Hayashi
Abstract: To suppress interdiffusion between the coating and alloy substrate in addition to ensuring slow oxide growth at very high temperatures advanced coatings were developed, and they were classified into four groups, (1) the diffusion barrier coating with a duplex layer structure, an inner σ−(Re-Cr-Ni) phase as a diffusion barrier and outer Ni aluminides as an aluminum reservoir formed on a Ni based superalloy, Hastelloy X, and Nb-based alloy. (2) the up-hill diffusion coating with a duplex layer structure, an inner TiAl2 + L12 and an outer β-NiAl formed on TiAl intermetallic and Ti-based heat resistant alloys by the Ni-plating followed by high Al-activity pack cementation. (3) the chemical barrier coating with a duplex layer structure, an inner* γ + β + Laves three phases mixture as a chemical diffusion barrier and an outer Al-rich γ-TiAl as an Al reservoir formed by the two step Cr / Al pack process. (4) the self-formed coating with the duplex structure, an inner α-Cr layer as a diffusion barrier and an outer β-NiAl as an Al-reservoir on Ni-(2050)at% Cr alloy changed from the δ-Ni2Al3 coating during oxidation at high temperature. The oxidation properties of the coated alloys were investigated at temperatures between 1173 and 1573K in air for up to 1,000 hrs (10,000 hrs for the up-hill diffusion coating). In the diffusion barrier coating the Re-Cr-Ni alloy layer was stable, existing between the Ni-based superalloy (or Hastelloy X) and Ni aluminides containing 1250at%Al when oxidized at 1423K for up to 1800ks. It was found that the Re-Cr-Ni alloy layer acts as a diffusion barrier for both the inward diffusion of Al and outward diffusion of alloying elements in the alloy substrate. In the chemical barrier coating both the TiAl2 outermost and Al-rich γ-TiAl outer layers maintained high Al contents, forming a protective Al2O3 scale, and it seems that the inner, γ, β, Laves three phase mixture layer suppresses mutual diffusion between the alloy substrate and the outer/outermost layers.
Authors: N. Mu, Takeshi Izumi, L. Zhang, Brian Gleeson
Abstract: Many high-temperature coatings rely on the formation of a continuous and adherent thermally grown oxide (TGO) scale of α-Al2O3 for extended resistance to degradation. For instance, the durability and reliability of thermal barrier coating (TBC) systems in gas turbines are critically linked to the oxidation behavior and stability of an alumina-forming β-NiAl-based bond coat. This study focuses primarily on the development of unique Pt+Hf-modified γ′-Ni3Al+γ-Ni coating compositions that form highly adherent, slow-growing TGO scales during both isothermal and cyclic oxidation at high temperature. Recent findings on the isothermal and cyclic oxidation behavior of γ′+γ alloys and coatings will be discussed, with particular emphasis on the effects of Pt, Al and Hf contents and distributions. Inferred reasons for the observed “Pt effect” will also be presented.
Authors: Toshio Narita, Stewart Ford, Takayuki Yoshioka, Takumi Nishimoto, Takeshi Izumi, Shigenari Hayashi
Abstract: A duplex layer, outer Pt-modified γ’-Ni3Al + γ-Ni and inner multi-barrier σ- Re(Cr,Ni,W), coating system was formed on a Ni-based single crystal 4th generation superalloy. Oxidation behavior of the coated alloy was investigated under thermo-cycling conditions, and analyzed by EPMA and XRD. During cyclic oxidation 1hr at 1100°C and 20 min at room temperature, a slow growing α-Al2O3 formed for up to 400 cycles and its spallation was rare. The parabolic rate constant of mass change was 6.3x10-16 kg2m-4s-1. The Pt-modified γ’-Ni3Al + γ-Ni contained 19Al, 12Pt, 4Cr, and 3Co in at%, and their concentration profiles were almost flat across the outer layer. The multi-barrier, σ-Re(Cr,Ni,W) contained 40Re, 23Cr, 17Ni, 7Al, 4W, 3.5Mo, and 3Co in at%. Furthermore, the γ’-Ni3Al containing Pt was newly formed between the multibarrier and bulk alloy substrate. It was concluded that the σ-Re(Cr,Ni,W) is compatible with the Ptmodified γ’-Ni3Al in the multi-diffusion barrier coating on Ni-based single crystal, 4th generation superalloy at high temperatures.
Showing 1 to 3 of 3 Paper Titles